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Abstract

Face recognition is a technology that appeals to the imagination of many
people. This is particularly reflected in the popularity of science-fiction films
and forensic detective series such as Crime Scene Investigation (CSI), CSI
New York, CSI Miami, Bones and Naval Criminal Investigative Service (NCIS).

Although these series tend to be set in the present, their application of face
recognition should be considered science-fiction. The successes are not, or at
least not yet, realistic. This does, however, not mean that it does not, or will
never, work. To the contrary, face recognition is used in places where the user
does not need or want to cooperate, for example entry to stadiums or stations,
or the detection of double entries into databases. Another important reason
to use face recognition is that it can be a user-friendly biometric security.

Face recognition works reliably and robustly when there is little variance
in pose in the images used. In order to eliminate variance, the faces are
aligned to a reference. For this we will use a set of landmarks. Landmarks
are points which are easy recognisable locations on the face such as the eyes,
nose and mouth.

A probabilistic, maximum a posteriori approach to finding landmarks
in a facial image is proposed, which provides a theoretical framework for
template based landmarkers. One such landmarker, based on a likelihood
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ratio detector, is discussed in detail. Special attention is paid to training and
implementation issues, in order to minimize storage and processing requirements.
In particular, a fast approximate singular value decomposition method is
proposed to speed up the training process and an implementation of the
landmarker in the Fourier domain is presented that will speed up the search
process. A subspace method for outlier correction and an alternative implementation
of the landmarker are shown to improve its accuracy. The impact of carefully
tuning the many parameters of the method is shown. The method is extensively
tested and compared with alternatives.

Although state of the art face recognition still has a giant leap to make,
before it is as good as on television, small steps are made by men all the time.
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Chapter 1

Biometrics and Face recognition

This chapter is loosely based on previously published material that was presented at
ProRISC 2004 conference in Veldhoven [12]

User-convenience, or ease of use, is an important issue when considering
security in the residential environment of the year 2010. Biometric
authentication, i.e. verifying the claimed identity of a person based on
physiological characteristics or behavioural traits, has the potential to
contribute to both security and user-convenience.

In this chapter we will start with a short introduction into biometrics in
Section 1.1. The use of biometrics will be discussed from a non-technical
point of view. In Section 1.2 a short introduction into the terminology of
biometrics will be given. Furthermore we will explore, in Section 1.3, face
recognition as the biometric tool to use and explore the challenges it gives us.
In Section 1.5 we will give an outlook onto this thesis. Finally in Section 1.6
we briefly recapitulate this chapter.
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Chapter 1. Biometrics and Face recognition

1.1 Introduction

The BASIS [50] project, IOP-GenCom Project IGC03003, addresses the use of
biometrics in the home environment. The goal of this project is to investigate
the possibilities of biometric authentication for securing the access to information and
services in the personal environment, with a focus on user-convenience and privacy
protection. The project was split into three work packages:

1. The problem of transparent biometric authentication as a means to
improve user-convenience.

2. The problem of biometric template protection as a means to protect the
user’s privacy.

3. The specific problems of the use of biometric authentication in the home
environment.

In this thesis the first item, the use of face recognition in the home
environment, will be discussed. An inventory of some problems and possible
solutions will be given. At the University of Eindhoven, Ignatenko et al.
addressed the second work package [36], [37], [38], [39]. The third work
package was covered by the Centre for Mathematics and Computer Science
(CWI) by Ambekar et al. [3].

In this section we will start with a possible scenario of waking up in
a, with BASIS technology equipped, smart house and then continue with
various aspects of a house of the future showing applications of biometrics
both for security and convenience.

1.1.1 Waking up in a smart home

The alarm clock rings and Susan has to get up. She goes to the shower and
the water temperature is adjusted to her preferences. Then Peter steps out
the bed and goes to the kitchen to prepare breakfast. As he enters the kitchen
the radio switches on at his favourite music channel and the light is adjusted
according to his preferences in the morning. Susan enters the kitchen and
tells that the message from her aunt Nori came that her plane arrives at 10:30
and she wants to be picked up by car. During the breakfast Susan and Peter
discuss who will pick up Nori and who will bring Peter’s father, Raymond,
to the house, since he would like to see Nori too. Peter says that he will
pick up Raymond and that Susan can get Nori and introduce her to BASIS,
because she has to stay for two weeks in the house as their guest. At 9:00
Peter and Susan leave the house while Dori is still in the bed, but they left
a message for him. BASIS will notify Susan and Peter when Dori gets out
of the bed. Dori wakes up and gets out of the bed and hears the message

2



1.1. Introduction

that his parents left for him. At the moment he leaves the bed, Susan and
Peter get the message that Dori is out of bed. He goes to the living room
to watch television. It switches immediately to Cartoon Network. It is new
to him - his parents only allowed BASIS to give him access to it last week.
During a commercial Dori goes looking for some sweets knowing that there
are some in the house. He tries every cupboard in the kitchen, but he is not
allowed to open the safe cupboard, since only parents have an access to the
toxic cleaning materials. Susan and Nori arrive and the door opens, because
it recognizes Susan. Inside Susan enrols Nori to BASIS, granting her access
to communication devices and the house. At a certain moment Susan gets a
message that there is a guest at the door. On the screen she sees Raymond.
He is alone, Peter is parking the car. Susan allows Raymond inside.

1.1.2 User-convenience

From a user-convenience point of view, biometric authentication has the
advantage that it does not make use of tokens, personal identification
numbers or passwords that can be forgotten or lost. Another advantage that
biometric authentication offers is the possibility of personalisation, because
a device or service can recognise a user and adapt its settings to the user’s
preferences. Here one could think of the temperature in the house or playing
music that everyone present will like. User-convenience can be further
increased, when biometric recognition is made transparent. This means that
it does not require any specific user action, such as placing a finger on a sensor
in order to present a fingerprint.

1.1.3 Security

From a security point of view, biometric authentication offers the possibility
to verify whether or not a user is physically present. However, it must
be noted that biometric authentication has an intrinsic trade-off between
security and user-convenience. We will go into this trade-off more in
Section 1.2. Because of this trade-off, not all biometric recognition methods
will be able to achieve the same level of security as for example personal
identification numbers, passwords, keys, key-cards or any combination of
those. Most biometrics, under ideal circumstances, are no more secure then
a 4 digit personal identification number, i.e. 1:10000 per attempt. These
numbers vary strongly between different biometrics with iris and finger print
recognition being very secure while gait and face recognition are less accurate
and thus less secure.

3



Chapter 1. Biometrics and Face recognition

1.1.4 Privacy

Considering user privacy, the use of biometric authentication also introduces
new problems and raises user concerns. Namely, when used for
privacy-sensitive applications, biometric data are a highly valuable asset.
When such data are available to unauthorised persons, these data can
potentially be used for impersonation purposes, defeating the security
aspects that are supposed to be associated with biometric authentication.
European privacy legislation provides various protection regimes that cover
biometric personal data, depending on their degree of vulnerability and
the purpose of their processing. Initial results from studies, done in the
context of the European project BIOVISION [2], show that there is a variety of
user concerns, associated with loss of privacy, reuse of electronically stored
fingerprints and written signatures and the fear that biometric data might
reveal medical conditions. One of the most promising privacy enhancing
solutions is biometric template protection. Biometric data are called privacy
enhanced when the data cannot be traced back to the user or reveals any
information about the owner. This means that privacy sensitive information
about physiological characteristics cannot be derived from the data. This
topic is outside the scope of this thesis, but is covered by Work Package 2
of the BASIS project.

1.1.5 The home environment

The home is a challenging environment for the introduction of biometric
authentication. First of all, it is a place where user-convenience and
personalisation are highly appreciated or even demanded. Biometric
authentication, in particular transparent biometric authentication, seems
the security mechanism to achieve this. Secondly, electronic banking and
electronic voting will be typically done from the home. These applications
require the privacy protection that anonymous biometric authentication
can offer. Finally, the home environment poses some specific challenges
that need to be addressed. For example, in contrast to access-control or
banking applications, there is no professional system manager, who can
assist with the enrolment and withdrawal of users, or who can set up
and maintain biometric databases. This conflict of interests is not unique
for the home environment. It extends to many other fields such as video
surveillance at airports, stadiums, public transport etcetera, where the
intrusion upon people must be minimal. The application of biometrics in the
home environment is covered by work package 1. The system integration
of multiple biometrics and application in the home are covered by Work
Package 3 of the BASIS project.

4



1.2. Terminology

1.2 Terminology

In this section we discuss some of the terminology in biometrics. To show
this more easily we recall two persons from our previous example, Dori and
Nori, and a recognition system or application, called Guardian.

1.2.1 Training, enrolment and testing

In order for Guardian to be able to recognise persons by their biometric
features he first has to learn what makes individuals different from each
other. The process of learning these distinguishable features is called
training. For commercial systems this has often already been done by the
manufacturer.

Guardian is now capable of discriminating between different individuals
but has knowledge of neither Nori nor Dori. In the next phase, enrolment,
Guardian learns the individual characteristics of Dori, Nori and others. This
is typically done by the owner of the system during installation. After this,
Guardian is ready to recognise people.

Now that Guardian can recognise Nori and Dori the system is
operational. A possible evaluation of the system is called testing. Testing
is often done on a large, representative data set. Figure 1.1 shows the three
phases, namely: training, enrolment and recognition. If the system were to
be installed the third phase would be recognising users.

User

images
Training

Training RecognitionEnrolment

images
Camera
footage

Figure 1.1: Three phases of operation of a camera based biometric system.

1.2.2 Identification and verification

Guardian can work in identification mode, verification mode or a
combination of both. In identification mode Guardian tries to identify a
person without any prior identity claim. Guardian will decide whether the
person is Dori, Nori or one of the other persons that have been enrolled. In
that case, even if it is someone who has not been enrolled, it will simply
state whom the person is most similar to. In verification mode Guardian
will verify the claim that Nori is indeed person Nori with sufficient certainty.
Guardian can work in a combination. Then it will first determine the identity
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Chapter 1. Biometrics and Face recognition

in identification mode followed by a verification step, using the result from
the identification as the identity claim. This is shown in Figure 1.2.

Verify
Id−claim

Image
Yes/No

Training and enrolment data

IdentityIdentifyImage

Figure 1.2: Identification and verification.

1.2.3 Genuine and imposter attempts

If Dori claims to be Dori and asks Guardian to verify his identity this is a so
called genuine attempt. On the other hand, if Nori or anyone else, except
Dori, would claim to be Dori this is called an imposter attempt.

1.2.4 False Accept Rate and False Reject Rate

When Guardian is in verification mode there are a few measures that
characterise its performance. The basic operation of Guardian is that it
evaluates an identity claim and the measured data. This evaluation will result
in a similarity score. This similarity score is a measure for the likelihood
that the person is indeed who he claims to be. A high score means that it is
probable that the identity claim is true. A low score shows little confidence
in the validity of the identity claim. Acceptance or rejection of this claim will
depend on a threshold. If the similarity score is higher than the threshold,
the identity claim is accepted, otherwise rejected. Plotting the probability
densities for both genuine attempts and imposter attempts gives us a graph
as shown on the left in Figure 1.3. In most realistic systems both densities,
imposter and genuine, will overlap. When we choose a threshold, some of
the genuine attempts will be wrongfully denied access resulting in a false
reject. At the same time some of the imposter attempts will results in a
similarity score which is over the threshold, resulting in a false accept. In
Table 1.1 the four outcomes are schematically given in a confusion matrix.
A False Accept Rate (FAR) is the portion of imposter attempts which has a
score over the threshold. Likewise, the False Reject Rate (FRR) is the portion
of genuine attempts which is erroneously rejected. It is easy to see that by
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1.2. Terminology

increasing the threshold the FAR is reduced and the FRR is increased. This
increases the security of the system. Lowering the threshold the FRR becomes
smaller and the FAR grows. This will reduce the security but increase the
convenience because the users will experience less false rejects. Access to
the vault of a bank will require a low FAR, the slightly higher FRR is an
acceptable loss. Grip pattern recognition on a police firearm [61] will require
a low FRR because the implications of a false reject are life threatening. In the
right part of Figure 1.3 we show a Receiver Operating Characteristic (ROC).
It gives the relation between the FRR and the FAR for all possible values of
the threshold. The ROC is a characteristic of Guardian. In order to compare
different verification systems the ROCs could be plotted together. If we want
a single number as indication of the performance the FAR is given for a given
FRR or vice versa. A point often used for this is the Equal Error Rate (EER),
where both are the same. A lower EER indicates less overlap between the
genuine and imposter probability densities, which is good.

Table 1.1: Confusion matrix.

Genuine Imposter
attempt attempt

Claim accepted True positive False positive
Claim rejected False negative True negative

FR
R Security

Convenience

EER

FAR

Genuine

Imposter

Pr
ob

ab
ili

ty
de

ns
it

y

SimilarityThreshold

FARFRR

Figure 1.3: Left: probability densities for both imposter and genuine
attempts. Right: an ROC curve.
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Chapter 1. Biometrics and Face recognition

1.3 Face recognition

Most people will know biometrics, especially face and fingerprint
recognition, only from the biometric passport or popular media, mostly from
films and series such as CSI. This has led to the perception the technology
is far more powerful and accurate than current state of the art. However,
this does not mean that biometrics is not a good and useful technology for
identifying people reliably. Face recognition, for example, can work on very
small images [14]. Biometrics can, under the right circumstances, identify
someone or confirm someone’s identity with acceptable certainty.

In this section we will first discuss what the requirements for a biometric
technology are, in order to be considered transparent. After that, we will
briefly outline the working of a face recognition system. Finally, we discuss
various sources of variability because it is a source of problems for face
recognition. Understanding these problems will enable us to make face
recognition more robust and accurate.

1.3.1 Transparent biometrics

As said, biometrics is a way to identify a person by body characteristics or
traits. Already a lot of biometric recognition methods are known such as
fingerprint, face, iris, speaker, odour, gait, posture, grip recognition etcetera.
A good overview of various biometrics and their basic operation was given
by Jain et al. [42]. Not all are as suitable for the home environment, due to
costs, performance, transparency requirements and other reasons.

Transparency means that in order to be recognised a person does not
have to perform any explicit action. Thus any biometric that does require
user action such as fingerprint, grip and iris recognition is, at least with
current technology, unsuitable because the person has to present a finger,
hand or eye to a sensor. Face, posture, gait recognition are examples of
biometrics that can be applied in a transparent way. Our research focuses
on face recognition. This is because in our opinion it offers the possibility
to be adapted to transparency and does not involve patented technology.
Face recognition lends itself well for transparent use because it is based on
cameras. An additional is that cameras can also be used for other biometrics
such as gait recognition or posture recognition.

1.3.2 Face recognition system

A real face recognition system could work as follows:

1. Find the face. A typical face recognition system will work on images
that contain a face. The exact location of the face is usually not known.
Therefore the face needs to be located first.

8



1.3. Face recognition

2. Find landmarks in the face. In this step we try to locate landmarks
in the face. Landmarks are stable and recognisable points in the face
like the nose, mouth and both eyes. This is done because the next step,
registration, needs it.

3. Register the face. Registering the face is preprocessing the image in
order to correct for certain variations. It can correct for small variations
in pose and expression. It uses the locations of landmarks to do this.
This is done to make the last step, recognition, more accurate and
robust. It is a rigid or deformable alignment to a reference.

4. Feature reduction. The preprocessed face is taken and the number of
features is reduced. Usually this is done for two reasons. The first is to
reduce the amount of data. The second reason is to create a maximal
separation between the classes, or individuals, in order to boost the
performance.

5. Recognise the face. During the last step the feature vectors are taken
and then classified. From this follows either an identity or confirmation
of an identity claim.

The first three steps actually are often composed into one step called
preprocessing.

In this project we started building a complete face recognition framework.
First we implemented steps 3, 4 and 5: images with known landmarks and an
available face recognition algorithm. This resulted in a demonstrator which
we used to show that the quality of the landmarks is of key importance for
the recognition.

1.3.3 Variability

Variability is the fact that two images of a person taken for identification can
differ due to numerous reasons. An example of how this variability makes
it, even for humans, difficult to see the difference between two persons is
shown in Figure 1.4. As a consequence of the transparency requirement, users
in the house will not perform any action to be recognised but just follow
their daily routine. Also, in the house the environmental conditions cannot
be controlled as in a laboratory. In most face-recognition systems there is a
controlled situation with controlled illumination conditions, a fixed frontal
pose, neutral expression. In a transparent environment this is not the case
and the conditions are far from ideal, which leads to a high variability. We
list a few causes for problematic recognition. Examples of the first four causes
are shown in Figure 1.5.
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Figure 1.4: There are three images of two persons. Even for a human it is not
easy to tell them apart.

1. Pose The pose is how the person is facing the camera. This is often not
in a frontal or prescribed way. This means that the images on which the
recognition is to be based will be frontal, profile, from the back of the
head or from any other angle. Also it is obvious that the distance to a
camera will give big variability in scale.

2. Illumination Apart from pose there are also differences in the
illumination conditions. This is caused not only by the difference in
position of cameras in a multi camera system. The conditions in the
house itself may vary where one can think of sunlight coming through
the window or the switching on or off the lights in the house.

3. Occlusion When an image of a person is an unobstructed frontal shot
all his facial features are visible. However, part of the face can be hidden
behind the head itself. Also, parts could be hidden behind objects such
as furniture or other persons in the room. The fact that not all of the
face is visible means that certain features are unknown.

4. Expression People are living and interacting with emotions showing
from their faces. This makes that images taken from persons in
the home environment will contain images of people with different
expressions. This can cause problems if the system is not trained well
enough to be able to cope with the expressions. These variations are in
general fast and could change over seconds.

5. Temporal changes "People change" is a well known saying. This is also
true for their faces. It can be anything from people starting to grow
a beard to ageing effects. In face recognition this is not a good thing.
When the system is trained to recognise people and the people change,
the recognition might start to fail or stop working properly.
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1.3. Face recognition

Figure 1.5: Variability of faces. Pose, illumination, occlusion and expression.

The variability encountered can be roughly separated into two groups;
intrinsic and extrinsic variability. Intrinsic variability is variability coming
from the person itself. They can be fast, such as expression, or slow as
ageing. Extrinsic variability are basically variabilities which are caused by
the position of the camera, illumination or other outside influences.

1.3.4 Registration

In order to correct for variations we should register the face. Not many face
recognition methods explicitly state which methods for registration they use.
Face localization methods can be seen as simple holistic, i.e. based on the
entire face, registration methods. The level of information in here is limited.
A good overview of overview of face detection methods is given in [72].
Most methods only provide location and scale, while some also provide
orientation, width/height aspect ratio or a subset of these. Sometimes these
methods are used in combination with finding landmarks such as the eyes
to rule out false positives from the face finder [60]. This type of holistic
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registration methods therefore lacks accuracy when it comes to registration.
To obtain a more accurate result a second step is needed. A more

accurate method could be based on rigid or deformable registration. Rigid
registration allows only translation, rotation and scaling. Deformable
registration non-linearly changes the proportions within the face. Both rigid
and deformable methods often use landmarks for this.

Because in the home environment the variability present creates a
demand for accurate registration we need an accurate landmarking method.
Using accurate landmarking will result in more accurate registration and
thus in higher security or user-convenience levels. Focus on landmarking
not only will benefit biometrics in the home environment, but it will also
benefit related fields of research such as (3D)-pose correction, biometrics for
mobile devices [62], video surveillance and expression analysis. Expression
analysis could play a role in the home environment to enable it to become
mood-aware, adapting the environmental settings in the house to one’s state
of mind.

1.4 Purpose of the research

As stated in Section 1.1 BASIS Work Package 1 deals with The problem of
transparent biometric authentication as a means to enhance user-convenience. As
explained in Section 1.3 we chose face recognition as the biometric modality
for the home environment. Thus the context of our research is to uncover
how face recognition can be applied in the home environment. For this the
challenges specific for the home environment need to be identified.

A large amount of research has been carried out on face recognition
methods and many good academic [34], [47], [41], [71] and commercial
systems exist [54]. There are many different methods, all with their own
strengths and weaknesses. Few or no methods target the home environment
specifically. Most commercial systems integrate all stages detailed in
Section 1.3 into one system. This makes these systems less suited for us
because they are not optimized for the home environment and are not flexible
enough to be adapted. Also, a commercial system is not transparent enough
for our purposes, often due to a lack of knowledge of the used methods.
Therefore we choose to build our own recognition system. A combination
of PCA [64] and LDA [6] is a well proven and robust method for feature
reduction. It can easily be followed by a likelihood ratio classifier. The face
recognition system that we used will be described in Chapter 2. Because the
biggest problems are due to variability, it seems prudent to address this in
the preprocessing stage as much as possible. Therefore, the most important
steps in the preprocessing will be face localization and registration. For
the first step we used the Viola and Jones algorithm [69], which has been
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proven to work well and fast. This step is clearly not the bottle neck of the
system. While setting up a complete face recognition system we discovered
that a large step forward could be achieved by improving landmarking, as we
will show in Chapter 2. Because of the variability encountered in the home
environment it is likely that some landmarks will be subject to distortions.
The information provided by the other landmarks can help to make the
estimation of the distorted landmark location more accurate and efficient by
limiting the search space. Our work on landmarking has been laid down in
Chapter 3, Chapter 4 and Chapter 5.

In sum, our research will focus on the importance of registration for
dealing with the variability encountered in the home environment. Special
attention will be given to the development of landmarking methods, as
a cornerstone of accurate registration methods. The research questions
addressed in this thesis are:

1. What is the relation between landmarking accuracy and face recognition
performance?

2. Can a statistical classifier approach be used for landmark detection?

3. Can the underlying statistical relationship between landmark locations be used
to improve landmarking?

4. Which methods can be used to reduce computational complexity and thus also
overcome the computational problems which arise from very large training
sets?

1.5 Overview of the thesis

1.5.1 Registration

Once we have localized a face in an image we can use it for training,
enrolment or recognition. There will be some pose variations in the images.
These variations are caused by inaccuracy of the face finder and the fact that
people may not look directly into the camera. It is wise to remove small
variations in pose instead of modelling them prior to training or recognition.
This is done in a separate step called ‘registration’. Usually this means
aligning it to a reference. The alignment process consists of translation,
rotation and scaling. The reference is very often a set of landmarks, for
example the average shape. Not all registration methods are landmark
based. Zitova et al. [73] give an extensive, though not complete, survey
of the different registration methods. Not all registration methods use
landmarks. Registration on the entire face is called holistic registration.
Boom et al. [15] got good results by registering on the matching score
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in face recognition. Other holistic registration methods can be based on
rotation invariant correlation in the spectral domain [48, 59, 58], correlation
on super resolution images [44] or using correlation to find the optimal rigid
transformation [45, 49].

We however aim at landmark based registration because the variance
within the landmarks is smaller than within the entire face. The landmarks
therefore can be found more precisely than the face. Also using more
landmarks will reduce noise and errors. This will be discussed in Chapter 2.

Research by Riopka et al. [57] and Cristinacce et al. [23] showed that
precise landmarks are essential for a good recognition performance. In
Chapter 2 we will also show that proper landmarking is of prime importance
for the improvement of registration. We will show it to be the weakest link
in our entire face recognition system and therefore make it the focus of our
research. Chapter 2 is an adaptation of work previously published [7].

1.5.2 Landmarking

In Chapter 3 we present a statistical method for landmarking. We show
that good and accurate results in landmarking can be obtained by means
of a simplified Bayesian classifier. Much attention is given to the proper
implementation, tuning and training of the algorithm in Chapter 4. Chapter 3
and Chapter 4 are a continuation of work which has been presented at the
FG2006 [8]. Both are combined into one paper which has recently been
accepted by the Journal of Multimedia for publication [11].

1.5.3 Prior knowledge

Prior knowledge is a tricky thing to define. When working with trained
classifiers, one could argue that all data used is prior knowledge. This is
however, not how we would like to define it. We define prior knowledge
as knowledge about the outcome of the classifier, which is not part of the
input of the classifier. In our case: the locations of the landmarks and their
underlying relationships. Each landmarker is trained on images of either
eyes, noses or mouths. They do not use information from other landmarks
when training a landmarker. This results in landmarkers trained to find a
nose, mouth or eye. Training the classifiers we only used the data relevant to
the particular landmark. The prior knowledge we now use, is the underlying
relationship between the landmarks. Imagine: both eyes are roughly on the
same height, the nose and the mouth are below each other, etcetera. This
prior knowledge can be modelled statistically and used.

In Chapter 5 we expand the methods from Chapter 3 and we will show
that the proper use of prior knowledge of the inter landmark relationship
is useful. Using this information explicitly instead of implicitly can make the
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landmarking algorithms more efficient and theoretically more sound. We will
show that the use of prior information in landmarking improves the results.
Chapter 5 is loosely based on previously published work [10]

1.6 Discussion

In this chapter we introduced the context of our research and gave a short
outline of the terminology in biometrics. In Section 1.3 we outlined face
recognition within our research and analysed its potential and weaknesses.
This leads to the focus on registration in Section 1.5.

The proposed landmarking methods are not only useful to find features
in a face. They can be used to refine any machine vision application where
accurate positioning is needed but where registration on the whole object is
for any reason not practical. A few examples could be to register the picture
of certain types of fruit prior to inspection, industrial inspection of parts or
the alignment of custom print work prior to cutting.

15





Chapter 2

On the recognition performance
importance of registration

This chapter is loosely based on previously published material that was presented at
SPS-DARTS 2005 conference in Antwerp. [7]

2.1 Introduction

Imagine that you and your companions embarked on an adventure into
unknown lands, with only a map to guide you to your goal. If unsure about
the road ahead you would turn to the map. The first thing you would do is
look around, to see which landmarks are there. Your group is travelling east
with misty mountains in the distance to the west. There is a river, running
from north to south, with a ford, which you just crossed. A dark forest
arises in the east. With this information, your relative position to all these
landmarks, you will be able to find your location on the map and continue

"Piled Higher and Deeper" by Jorge Cham. www.phdcomics.com
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your journey. The more accurately you know your relative position to the
landmarks, the better you can determine your position on the map. The
reverse is also true; the accuracy of the landmarks on the map is equally
important for your navigation. Determining one’s position on the map is
actually registering the map to one’s surroundings. Both the accuracy of your
estimate of the landmark locations and the accuracy of the landmarks on the
map, is of direct influence on how well you will register the map to your
surroundings.

2.1.1 Accuracy of the verification rate

Before we evaluate the impact of the accuracy of landmarks and registration
on face recognition, we need a good method and measure to evaluate their
impact in a statistically valid way. For the performance of the face recognition
system we will use the EER as discussed in Section 1.2.

An indication of the reliability of error rates is seldom given, though they
depend strongly on the number of tests and the way in which the data are
split into a training and testing set. How we split the datasets is explained
in Section 2.3. Error rates, such as the EER, easily vary by a factor of two as
a result of different splits between training set and testing set. Therefore, a
single error rate without the information on how it has been estimated or an
estimate of its reliability is hardly informative. We will propose to include an
estimate of the reliability of performance measures with the measure itself.
This is discussed in Section 2.4.

2.1.2 Robustness to noise

In the field of face recognition, registering a face to a reference is not much
different from registering a map to one’s surroundings. In the cartography
example the quality of navigation depends on the registration of the map.
Likewise, we expect the quality of face recognition to depend on the quality
of the registration. Since we want better face recognition we argue that it is
worthwhile to examine the relationship between registration accuracy and
face recognition robustness.

In order to do this, we perform some recognition experiments where the
registration is distorted by noise on the landmarks. Riopka and Boult [57]
performed similar experiments with noise added to the position of the eyes
during registration. We will discuss the face recognition algorithm that
we used in Section 2.2. The experiments determine the relation between
landmarking accuracy and face recognition performance. These experiments
are discussed in Section 2.3 and in Section 2.4 the results will show that the
recognition performance is sensitive to proper registration.
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2.2. Face recognition

2.2 Face recognition

In this section the algorithm used for face recognition is discussed. It should
be noted that it has not been optimised and that tuning of parameters
most likely will improve the overall performance. This is, however, not
necessary in order to evaluate the sensitivity to landmarking accuracy during
registration.

2.2.1 The algorithm

Preprocessing

The first step is registration. We tested two different registration methods.
One uses rigid transformation while the other uses a deformable method to
generate a so-called shape free patch (SFP) [21].

Rigid registration The registration is rigid. This means that by means
of rotation, translation and scaling the Euclidean distance of some or
all landmarks to a set of reference landmarks is minimised. Affine
transformation can only correct for in-plane variations. Both rigid
registration and the SFP are explained here.

Shape free patch A deformable method deforms the image so that all
landmarks are at fixed positions. This is useful to compensate for a wider
range of pose variations and to a limited extent, expressions. We apply a
non-linear transformation, using thin-plate splines [13]. This transformation
warps each face image to an SFP, in which the texture has been made
invariant of shape variations. Note here that warping to a SFP is not a rigid
transformation.

Vectorization from ROI

After registration the images containing the faces are cropped to 251 pixels
high and 231 pixels wide. The centres of the eyes in the reference image are
100 pixels apart. From this image a fixed region of interest (ROI) that contains
most of the face is selected. All grey scale values in the ROI are put into a
feature vector ~x. The ROI is visualised in Figure 2.1. In order to return to a
full description of the face image, the shape free patch-based feature vector
can, optionally, be extended with the shape information: the deviations of 20
landmark locations with respect to their means.
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Figure 2.1: Region of Interest.

Linear transformation

To each measurement vector a linear transformation is applied. The
transformation, under Gaussian assumptions, reduces the dimensionality,
turns the total covariance matrix into an identity matrix and diagonalizes
the within class covariance matrix. We assume all persons to have identical
within class covariance matrices.

From the images we calculate the probability density function (PDF) of
all users called the total PDF, or background PDF. This is a multi-variate
Gaussian of which we determine the total covariance matrix, ΛT. The
images from all persons are placed over the feature space. In Figure 2.2 we
schematically illustrate this. In the upper left corner we show the initial PDFs
prior to linear transformation. The large oval denotes an equal probability
contour of the PDF while the smaller ovals represent equal probability
contours of the PDFs of individual users. We transform the data by rotation,
scaling and again rotation. After this, the total variance is identical in all
directions and the individual users can de projected onto the horizontal axes
without loosing separability. This is illustrated in the lower right corner
of Figure 2.2. The transformation matrix is determined during training as
explained in Section 2.2.3.

Log likelihood ratio

The extracted feature vector, ~y, is then compared to class i. This is done by
calculating a log likelihood based matching score S:

Si(~y) = −(~y−~µi)TΛ−1
W (~y−~µi) +~yT~y− log |ΛW |, (2.1)
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Figure 2.2: Transformation of the feature space by means of rotations and
scaling. After transformation and projection onto the horizontal axes, the
data are still separable.

where ~µi denotes the, as template enrolled, class mean and ΛW the within
class covariance matrix.

Accept of reject

By comparing Si(~y) to a threshold, L, we determine whether the identity
claim is accepted or rejected.

2.2.2 Enrolment

The stored templates are the class means of the feature vectors in the reduced
feature space. For each class to be enrolled, the linear transformation of the
class mean is determined.

2.2.3 Training

The transformation matrix is calculated in a training phase. The training is
done using a combination of the Eigenfaces [64] and Fisherfaces [6] method:
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• First apply Principal Component Analysis (PCA) on the training data
after subtracting the mean. After a subsequent dimension reduction the
number of features is chosen to be twice the number of classes.

• Then apply a linear discriminant analysis (LDA), making the total
covariance matrix, ΛT, unity. After a subsequent feature reduction the
number of features is the number of classes in the training set minus
one [67]. Store the within class covariance matrix, ΛW , total average,
~µT, and the transformation matrix, T.

In the testing phase a feature vector, ~x, is projected onto the reduced feature
space by premultiplying it with the transformation matrix, i.e.

~y = T(~x−~µT) (2.2)

2.3 Experiments

In this section we describe the experiments. In one experiment we investigate
both the sensitivity to noise and the accuracy of the EER. First we will explain
the recognition set-up followed by a brief explanation of the details for both
experiments.

2.3.1 Experimental set-up

We used repeated random sub-sampling cross-validation with random
partitioning [26], [46]. This means that the data are split into a training set and
a testing set. A fixed fraction (e.g. 50%) of each class is randomly selected and
put into the training set. The remainder is put in the testing set. The training
set is also used for the enrolment. After each split we perform one run.

A run consists of splitting the data into a training set and a testing
set, training the classifier, enrolling the data and running the classification
experiment on all images in the testing set. One run thus gives us matching
scores for both the imposter and genuine attempts.

2.3.2 Accuracy of the error rate

The EER calculated after one run is not the reliable estimate one might expect.
A more reliable estimate as well as an indication of the standard deviation can
be obtained from more runs. There are two methods to use the results of n
simulation runs.

1. Calculate an EER for each run. Average all the EERs from the individual
runs and calculate the standard deviation:

EER ≈ 1
n

n

∑
i=1

EERi, (2.3)
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σcalc =

√
1

n− 1

n

∑
i=1

(EERi − EER)2. (2.4)

2. Accumulate the matching scores S from all n runs. After that, determine
the EER of the system. The estimated standard deviation can be
calculated using the results from the first method:

σest =
σcalc√

n
(2.5)

.

The first method makes it possible to calculate the standard deviation as a
reliability measure of the average EER, but the estimate of the EER in method
1 may be biased. For each run the EER is found as an optimum at a different
threshold value L. In reality L is fixed. The true EER can thus significantly
differ from the average EER for the first method. The second method does
not have this problem and will give a better or equally reliable estimate of
the real EER. The drawback is that because there is only one EER a standard
deviation cannot be calculated. A combination of both methods solves this
problem. For n large enough we expect σest to converge to the same number
for both methods. Then the standard deviation of the first method can be
used to make an estimate of the standard deviation of the second method.

Part of the experiment aims to investigate the accuracy and validity of the
EER. We therefore group the data in bins. A bin is defined as a number of
runs over which all similarity scores are accumulated. The EER that is given
is an average EER over all bins. The EERs of all runs divided over several
bins are then averaged and the standard deviation is determined. One should
note that the standard deviation may not be an ideal measurement to indicate
the reliability of the EER because the distribution of the EER is possibly not
Gaussian and therefore we do not know which portion of the EERs is within
one standard deviation.

This experiment used two landmarks for rigid registration and had no
noise added to the labelled landmarks.

2.3.3 Robustness to noise

In this section we discuss how to examine the robustness to the noisy
registration. Gaussian distributed zero mean noise with a known standard
deviation was added to the landmark coordinates before the registration. In
total four different registrations are used.

We expect that the performance degrades severely when the noise level
is increased. This was also observed by Riopka and Boult [57]. Furthermore
registering 20 landmarks promises better recognition than registering only
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two landmarks because the noise on the landmarks is Gaussian and equally
distributed in all directions and is averaged out in the 20 landmarks. We
choose to use two -both eyes- and 20. The maximum number of landmarks
was chosen because we expect it to result in the lowest error. The lowest
number of landmarks to determine registration was chosen to maximize the
influence of noise. These two will give upper and lower bounds for the error.
Apart from two rigid registrations we used two deformable methods. One is
the SFP, the other is the SFP with the coordinates added to the feature vector.
We expect the SFP and the SFP with shape information to outperform the
rigid registration, when no noise is added. They may be more sensitive to
noise than the rigid registration, because there is no averaging out of the noise
on the registration landmarks and all the noise contributes to the SFP and
shape.

2.4 Results

The results were obtained by simulations on the BioID [43, 35] database
which comes with 20 labelled landmarks in the face, as illustrated in
Figure 2.3. These landmarks are around the eyes, nose, mouth and chin.
In the database there are images of 23 individuals, with high diversity in
number of images per person. The minimal number of persons per class is
two and the maximum is 150.

Figure 2.3: Landmarks as provided by the BioID database.
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Not all 1521 faces are completely within the ROI due to the fact that parts
of the face may be outside the original image. Because of this we used a fixed
subset of 1389 images of which 689 for the training and enrolment set and 700
for the testing set. Per run there are 700 genuine attempts and 15400 imposter
attempts.

2.4.1 Accuracy of the error rate

In Table 2.1 the results of one simulation of 250 runs are given. The average
EER for different bin sizes is given. It should be noted that the EER given, is
the average EER from all bins.

It shows that for bin size 10 and 50, σest is a reasonable approximation
of σcalc. It should be noted that σcalc. for binning size 50 is calculated over
only 5 EERs. This makes the estimate of the standard deviation on the EER of
250 runs per bin acceptable. The average EER does not change significantly.
Strong bias effects cannot be found on the BioID database.

Table 2.1: EERs for rigid registration using two landmarks without added
noise.

Bin size EER [%] σcalc. [%] σest. [%]
1 2.94 0.47 -
10 2.94 0.15 0.15
50 2.94 0.06 0.07
250 2.94 - 0.03

A standard deviation of 0.5% on an EER of 2.9% is large. Table 2.1
shows that in order to be sure of the first two digits, around 50 runs is the
minimum. It should be noted that this number applies only to this database.
For different databases different EERs and standard deviations apply and
thus a different number of runs are needed in order to obtain an EER with an
acceptable reliability.

For Gaussian distributions it is known that approximately 68% or 95%
of the results lie within one respectively two times the standard deviation.
It is safe to assume that for our real world problem it is not ideally
Gaussian distributed. However, for the example worked out in Table 2.1 the
distribution is unimodal. For this particular split in training set and testing
set, we observed that of the EERs 170

250 = 68% or 239
250 ≈ 95% are inside the one

or two standard deviation respectively. This complies with what could be
expected from a Gaussian distribution. Still we assume that the estimated
standard deviation is an acceptably reliable measure for the variance of the
EER and should be presented along with the EER.
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We, therefore, conclude that, when publishing error rates the number of
runs and, or at least, the σest. should be given in order to be able to make
valid comparisons to other work.

2.4.2 Robustness to noise

We added noise with standard deviations of 0 to 5 pixels to the landmark
coordinates. After registration a check was done to see whether we had not
included a region into the ROI that was not in the original image. This is
unlikely because all images which do not contain a full face were rejected but
due to the noise on the labelled landmarks this could occur. If this occurred it
was simply reported and the results were ignored. For each experiment with
different settings 250 runs were done. An attempt to include parts outside the
original image dimensions into the ROI only occurred a few times. For noise
with a standard deviation of 4 pixels it occurred 13 times and for noise with
a standard deviation of 5 pixels it occurred 38 times out of 1389 × 50 = 69450
generated images. Both for alignment on two landmarks. For alignment on
20 landmarks or the SFPs this effect was not detected.

In Figure 2.4 some examples of badly warped or registered images are
shown. The noise has a standard deviation of 3 pixels.

Figure 2.4: Registration which wrong zoom and rotation (left) and SFP
showing strange deformations (right).

The results for the robustness to noise simulations are as was expected:
the error rates increase when the amount of noise on the labelled landmarks
rises. The alignment with 20 landmarks performs better than with only two
landmarks and is more robust to noise. This can be seen in Figure 2.5 and
Table 2.2. For the alignment on two landmarks this is also what Riopka and
Boult [57] found but the results for our PCA/LDA implementation do not
appear to degrade as fast as the PCA implementation in [57].

Using SFPs the performance is about the same as the alignment on 20
landmarks but it is less robust to noise. This concurs with our expectations.
The results for the SFP with shape information are the best. At low distortion
they outperform all the other methods but the equal error rate as function
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Figure 2.5: The EER as a function of the noise on the labelled points prior to
registration.

Table 2.2: The EER over 250 runs and for zero added noise.

EER [%] σest. [%]
Registration on two landmarks 2.94 0.03
Registration on 20 landmarks 2.26 0.03
SFP 2.18 0.03
SFP+shape 1.55 0.02

of the noise grows faster than for the alignment on 20 landmarks and it
is therefore less robust. The sensitivity of SFP to noise is caused by the
fact that the noise is not averaged over the number of landmarks, causing
unpredictable distortions of the face. This was illustrated in Figure 2.4

It is interesting to note that for all systems the performance for
added noise with a standard deviation of one pixel and without noise is
approximately equal. This leads to the conclusion that the labelled landmarks
have an intrinsic noise with a standard deviation in the order of one pixel.

2.5 Conclusions

We aimed to evaluate the relationship between the quality of landmarks used
for registration and the outcome of a recognition experiment. In order to do
so we also proposed to present the numerical results, such as error rates, in
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a statistically valid format. In our case, when EERs are presented, both the
number of runs and the estimated standard deviation should be given, in
order to estimate the confidence interval of the results. When evaluating the
results one should be aware of possible bias effect in the results.

Registration on two labelled landmarks is most sensitive to noise. The
overall performance is less than that of other methods. Registration on 20
landmarks however is much more robust and also performs a lot better.
Using more landmarks seems to improve registration. Using a shape
free patch and the shape information combined does outperform all other
methods for low noise but is less robust to noise than straight forward
alignment on 20 landmarks. When using an automated face finder for an
automatic face recognition system it is important to find enough landmarks
which are reliable enough. If this is not done the error rate will be too high.

We also showed that by using bins a good estimate of the standard
deviation of the error rates, and thus their accuracy, can be made.

The positive influence of both using more and more accurate landmarks
on the outcome of a face recognition experiment confirms our expectations
that better registration leads to better face recognition for all registration
methods and it underlines the importance of accurate landmarking.
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Chapter 3

A Practical Subspace Approach
To Landmarking

3.1 Introduction

In his book ’Climbing Mount Improbable’ [25], Richard Dawkins nicely
illustrates that the evolutionary path that most likely leads to survival, is
like climbing a mountain: Mount Improbable. At the bottom of Mount
improbable we find the first simple life. All paths up the mountain start here.
The more evolved a species is, the higher it is located on the mountain. Every
species that lives and ever lived has his own unique spot on the mountain.
The evolution of a species travels up the mountain by walking the easy road,
not by taking the shortest route from the bottom to the top via the steep side.
One small step at a time. Wolves have their own spot on the mountain. Near
the wolf are his cousins such as foxes, dogs, coyotes and jackals.

Assume, for sake of the argument, that the wolf is at the highest top of

"Piled Higher and Deeper" by Jorge Cham. www.phdcomics.com
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Mount Improbable. This means that we can say: the higher on the mountain,
the more likely it is that it is indeed a wolf. Close to the summit we find the
wolf’s cousins such as jackals, foxes, dogs and coyotes. Evolution within an
ecological niche favours certain features over others, namely the ones that
enhance its chance of survival. This is similar to how a classifier works.
Instead of an ecological niche we have training data to favour the features
that make up an eye. Our classifier, Mount Eye, has the ideal eye at the very
top. If something looks like an eye, and it looks like an eye, it probably is
an eye.1 The higher something ends up on Mount Eye, the more likely it is
an eye. For each possible location in the face we estimate how high it would
score on Mount Eye. We assume that the location with the highest score,
the most likely location, is the location of the Eye. This example shows the
general working of any landmarker.

Figure 3.1: Left: Skeleton of a Tasmanian tiger. Right: Skeleton of a wolf.
Images from [16]

Figure 3.2: Tasmanian tigers.

1This is not a typo.
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The Tasmanian tiger, see Figure 3.2, is a, since 1936 extinct, marsupial
from Australia and Tasmania. It looks very similar to the wolf, it takes
an expert to see the difference between the skull of a wolf and that of a
Tasmanian tiger. Both evolved within the same ecological niche after having
drifted apart since the beginning of life on earth. In Figure 3.1 we can see
that both have very similar skeletons. Even though the Tasmanian tiger and
the wolf look very similar, the paths up Mount Improbable are completely
different. Still, both paths ended very close to each other on the mountain,
possibly even closer to the wolf than his cousins the fox, coyote and jackal.

This shows the weakness of a classifier. Give an expert two skulls and
he can tell you which one is the wolf and which one is the Tasmanian tiger.
The task becomes more difficult when one or both skulls are damaged. The
details which enable the expert to determine the difference are gone and he is
much more likely to make mistakes. The image samples of the eye, the mouth
or both can be damaged, by whatever possible cause. When this happens, to
a classifier, an eyebrow can look more like an eye than the real eye, even
though it is at a completely illogical location in the face. We give another
example: imagine that there is a half open mouth in the image. It shows
upper lip, lower lip, teeth and a dark spot between them. It is not hard to see
that with some distortion this will look like an eye to the classifier. We assume
that the most likely landmark location is the real landmark location and not
something which accidentally gets the highest score from the classifier. In
Chapter 5 we will address this problem, and how to reduce the likeliness of
this kind of mistake.

In Chapter 2 we showed the importance of accurate landmarking. Here,
in Chapter 3, we present a simplified Bayesian method for landmarking,
namely the Most Likely Landmark Location (MLLL). In Chapter 4 we will
show this method to be a good method for accurate landmarking. MLLL
is a continuation of work by Bazen et al. [5]. It was proposed first at
the Face and Gesture recognition conference in Southampton in 2006 [8].
Continuation of this work has recently been accepted by the Journal of
Multimedia publication [11] and is the basis of Chapter 3 and Chapter 4. The
text has been included without major changes, except layout, typos and that
both appendices and references have been moved to the end of this thesis.

A first step towards an accurate landmarker

At the FG2006 [8] we showed that good and accurate results in landmarking
can be obtained by means of a simplified Bayesian classifier. From ongoing
research we learned that MLLL could be improved further. Several possible
improvements were identified. First of all the dataset, BioID, which was
used to train MLLL, would be a good upgrading candidate since it contained
only 1521 images from only a very small number of people; 23 individuals.
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Replacing this small training database with a larger one turned out to give
rise to several challenges such as memory constraints. At the same time
evaluating the large amounts of images gave rise to the need for a more
efficient version of the MLLL algorithm. Also, within the MLLL algorithm
there are numerous parameters that can be tuned for more efficient and
accurate performance.

A new theoretical foundation for MLLL is presented in Section 3.2. In
Section 3.2 we also present an improved version of MLLL, which is not
only a lot more efficient but at the same time performs more accurately.
This is followed by two practical solutions for implementation problems that
arise due to the size of the training data. First an Approximate Recursive
Singular Value Decomposition (ARSVD) algorithm is presented as a solution
for computational limitations, regarding computer memory and processing
time, using subspaces. Secondly, the MLLL is implemented in the spectral
domain. Finally, in Section 3.5 the conclusions are presented.

3.1.1 Importance of registration for face recognition

Accurate registration is of crucial importance for good automatic face
recognition. Although face recognition performance has improved greatly
over the last decade [54], better registration will still lead to better recognition
performance.

Many, but not all, registration systems use landmarks for the registration.
A landmark can be any point in a face that can be found with sufficient
accuracy and certainty, such as the location of an eye, nose and mouth. Some
examples of landmarks are shown in Figure 3.3. The markers denote the
landmarks as included in the BioID [43, 35] database (left) or FRGC [56]
database (right). Riopka and Boult [57], Cristinacce and Cootes [23], Wang
et al. [70], Campadelli et al. [17] and Beumer et al. [7, 8], and others
have shown that precise landmarks are essential for a good face-recognition
performance. In [7], for example, it was shown that more accurate
landmarking brings a higher recognition performance and that using more
landmarks results in higher recognition performance.

Besides face recognition there are other applications, such as positioning
or measurement in an industrial setting, for which the detection of a
landmark in an image with high accuracy is desirable.

3.1.2 Related work

Currently a popular approach is to use adaptations of the Viola-Jones [68]
face finder for landmarking [23, 19, 18]. We use a version of that method in
this paper as a reference algorithm. The original Viola-Jones method uses
weak Haar classifiers and a boosted training method known as Adaboost.
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Figure 3.3: Landmarks as provided by the BioID database (left) and the FRGC
database (right).

Multiple variations to this have been proposed. For example, Wang et al. [70]
use this method in combination with different classifiers for eye detection.
Because the Haar classifiers only represent rectangular shapes they propose
to use multiple weak Bayesian classifiers assuming Gaussian distributions.

Campadelli et al. [17] made a different variation on to the Viola-Jones
classifier. They used a combination of Haar classifiers and Support Vector
Machines to create an eye detector. The Haar classifiers do not work on the
image texture but on their wavelet decomposition.

Cristinacce and Cootes [22] present a landmarking method called Shape
Optimized Search where probability of the constellation of landmarks is used
to predict where the landmarks are to be expected. Then, they use one of
three different landmark detectors to refine the search. Active Shape Models
(ASM) [20] and Active Appearance Models (AAM) [21] can also be used for
finding landmarks but both methods need good initialization for accurate
results. These initialization must be provided by another method.

Everingham and Zisserman [28] use three statistical landmarking
methods, namely a regression method, a Bayesian approach and
discriminative approach. The second method calculates a log likelihood ratio
between landmark and background samples i.e. samples not containing
a landmark. Everingham concludes that the Bayesian approach performs
best compared with much more complicated algorithms. The Bayesian
implementation is essentially the same as earlier work by Bazen et al. [5].
Moghaddam and Pentland [51] used PCA to find landmarks.
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3.1.3 Our work

In this chapter we continue earlier work by Bazen et al. [5] and Beumer
et al. [8]. A new theoretical foundation for the Most Likely Landmark
Locator (MLLL) [8] is presented in Section 3.2. This is followed by
two practical solutions for implementation problems that arise due to
the size of the training data. First, an Approximate Recursive Singular
Value Decomposition (ARSVD) algorithm is presented as a solution for
computational limitations, regarding computer memory and processing time,
which occur if the training data grows in volume. The ARSVD tackles
this problem using subspaces. Second, a spectral implementation of MLLL
will be derived, allowing for a more than tenfold speed-up of MLLL.
These new modifications render MLLL a practical and accurate method for
landmarking.

The application MLLL was designed for, is frontal face recognition with
limited variation of pose and illumination. This implies that the landmarks
will not be occluded, that they will be in predictable locations and that
there will be no projective deformations. In more advanced versions of the
proposed method, however, these constraints could be relaxed or dropped.

Two additions to MLLL are proposed. The first is a subspace-based
outlier detection and correction method named BILBO [8] that is capable
of detecting and correcting erroneous landmarks. The second addition is
a repetitive implementation of landmarking, The Repetition Of Landmark
Locating (TROLL), which will improve accuracy. Both BILBO and TROLL
can be used in combination with MLLL but can also work with any other
landmarking algorithm. BILBO will be discussed in Section 3.3 and TROLL
in Section 3.4.

3.2 Most Likely Landmark Locator

In this section we will present the Most Likely Landmarks Locator. First,
a theoretical framework for landmarking will be presented. After that
some implementation issues will be addressed. In order to speed up the
computations we introduce a frequency domain implementation. Also the
Approximate Recursive Singular Value Decomposition (ARSVD) is presented
as a solution for computing large volume databases using subspaces.

3.2.1 Theory

Let the shape~s of a face be defined as the collection of landmark coordinates,
arranged into a column vector. The texture samples of the face are within
a region of interest (ROI) and also arranged into a column vector, ~x. The
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maximum a posteriori estimate (MAP) [65] of the location of the landmarks,
~s∗, given a certain texture ~x, can be written as

~s∗ = argmax
~s

q(~s|~x), (3.1)

where q(~s|~x) denotes the probability density of the shape given image ~x.
According to Bayes rule, Equation 3.1 can be rewritten as

~s∗ = argmax
~s

p(~x|~s)
p(~x)

q(~s), (3.2)

where p(~x|~s) can be recognized as the probability density of the texture ~x
given a shape ~s. Furthermore, p(~x) denotes the probability density if the
landmark locations are unknown. Finally, q(~s) is the probability density of
the shape. The quotient in Equation 3.2 is the likelihood-ratio of the texture
belonging to shape~s.

Ideally, one would like to compute ~s∗ from Equation 3.2, including the
prior probability density q(~s) of ~s. In order to reduce the computational
complexity we assume q(~s) to be uniform over the region of interest.
Therefore q(~s) can be removed from Equation 3.2. Let ~xi be the texture
surrounding the i-th landmark and ~si its location. We assume, for practical
reasons, that ~xi only depends on~si and that ~xi and ~xj, i 6= j, are independent.
Therefore,

p(~x|~s)
p(~x)

=
l

∏
i=1

p(~xi|~si)
p(~xi)

. (3.3)

With this simplification the optimization problem in Equation 3.2 can be
reformulated as

~s∗i = argmax
~s

l

∑
i=1

(
log(p(~xi|~si))−

log(p(~xi))
)

(3.4)

We assume that the probability density of the landmark texture p(~xi|~si) is
Gaussian with mean ~µl,i and covariance matrix Σl,i. Likewise p(~xi), which
we will denote as the background density, thus emphasizing that xi may
come from an arbitrary location, is Gaussian with mean ~µb,i and covariance
Σb,i. These assumptions have been made for practical reasons, but are
mildly supported by the fact that especially after dimensionality reduction,
the texture probability density tends towards Gaussian. A more accurate
model might be a Gaussian mixture model, but that would be much more
complex. Because of the assumed mutual independence of the landmarks,
the terms in Equation 3.4 can be maximized independently. This makes that
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the estimation of the shape is now simplified to

~s∗i = argmax
~s

{(
~xi(~s)−~µb,i

)TΣ−1
b,i

(
~xi(~s)−~µb,i

)
−
(
~xi(~s)−~µl,i

)TΣ−1
l,i

(
~xi(~s)−~µl,i

)}
(3.5)

for all landmarks i = 1 . . . d. This is identical to the optimization criterion
used in MLLL presented in previous work [8]. Equation 3.5 is intuitively
pleasing as each term of the summation benefits the similarity to a landmark
and penalizes the similarity to the background.

Dimensionality reduction

The covariance matrices, Σl and Σb in Equation 3.5, need to be estimated from
training data. Because landmark templates can be as large as 96× 64 = 6144
pixels, direct evaluation of Equation 3.5 would be a too high a computational
burden. Due to the limited number of training samples available in practice,
the estimates of the covariance matrices could be rank-deficient. Even if not,
they would be too inaccurate to obtain a reliable inverse, which is needed in
Equation 3.5.

Therefore, prior to the evaluation of Equation 3.5, the vector ~x will be
projected onto a lower dimensional subspace. This subspace should have
several properties. First of all, its basis should contain the significant modes
of variation of the landmark data. Secondly, it should contain the significant
modes of variation of the background data. Finally, it should contain the
difference vector between the landmark and the background means, for a
good discrimination between landmark and background data. The modes
of variation are found by principal component analysis (PCA) on landmark
and background training data. After this first dimensionality reduction the
landmark and background densities are simultaneously whitened [31], such
that the landmark covariance matrix becomes a diagonal and the background
covariance matrix an identity matrix in the reduced feature space. The latter
whitening step is done for computational reasons. See Appendix A.1 for
details of the procedure of the dimensionality reduction.

The previous feature dimensionality reduction steps aimed at creating
a good representation of the landmark and background data. In the next
feature reduction step we want to select the features that have the highest
discriminative power. In this feature selection step, a fixed number of
features are kept. The standard Linear Discriminant Approach as proposed
by Fisher [30] is not applicable because the covariance matrices Σb,i and Σl,i
are different. Instead, our approach is to keep those features for which the
mean divided by their standard deviation is maximal. Informal experiments
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in which this method was compared with alternatives have shown that this
method gave the best results.

Feature extraction and classification

The total process of feature reduction and simultaneous whitening can be
combined into one linear transformation by a matrix T ∈ Rm×n, with
n the dimensionality of the training samples and m the final number
of features after reduction. The detailed calculation of the feature
reduction transformation T is given in Appendix A with the final result in
Equation A.12. We aim to reduce the dimensionality while trying to optimize
the discriminability between the landmark and non-landmark distributions.
The method applied is variation of Approximate Maximum Discrimination
Analysis [4].

With T we project the means, covariance matrices and feature vectors onto
the subspace, ideally:

~µ′l
def= T~µl , ~µ′b

def= T~µb. (3.6)

Λl
def= TΣlTT, Ib

def= TΣbTT. (3.7)

~y(~s) def= T~x(~s). (3.8)

where Λl is diagonal, Ib is identity, ~y(~s) is the feature vector and ~x(~s)
denotes sample values from the ROI at location ~s. Please note that
Σ and T are estimates obtained from data and, therefore, not exact.
Consequently, the resulting covariance matrices after the transformation
are only approximately diagonal. After this transformation Equation 3.5
becomes

~s∗ = argmax
~s

{(
~y(~s)−~µ′b

)T(
~y(~s)−~µ′b

)
−
(
~y(~s)−~µ′l

)TΛ−1
l

(
~y(~s)−~µ′l

)}
. (3.9)

Note that although Equation 3.9 resembles Equation 3.5, the result will
be different due to the dimensionality reduction. Solving Equation 3.9 is,
however, computationally far more efficient than solving Equation 3.5.

3.2.2 Approximate Recursive Singular Value Decomposition

Training on large data sets should make MLLL accurate and robust.
However, as the amount of training data grows, the calculation of T
quickly becomes computationally prohibitive, either because of time or, more
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1

1

T

~y(1,1)

ROI

s2

s1
~x(1, 1)

~x(~s)

~y(~s)

Figure 3.4: Feature extraction in the spatial domain. The pixel values
surrounding the location of interest, ~x(~s) ∈ Rm are multiplied with T ∈
Rm×n. The resulting feature vector ~y(~s) ∈ Rn is of lower dimensionality than
~x(~s).

likely, memory constraints. Especially the Singular Value Decompositions
(SVDs) in Equations A.1 and A.9 in Appendix A.1 are troublesome. In
order to overcome these problems an Approximate Recursive SVD (ARSVD)
algorithm is introduced. Proper application relies on two conditions. The first
is that the estimates of the covariance matrix improve when more data are
processed. Second, the amount of explained variance kept in each recursion
step must be sufficient. As the SVD is part of the feature reduction process,
finally only a certain amount of the explained variance is to be kept and the
amount of variance kept by the ARSVD should be higher than that. If these
two conditions are met, there should be no significant loss of information.
ARSVD is fairly straightforward. Let X be a matrix with all feature vectors
as columns, split up into a number of submatrices, called blocks, with a fixed
number of columns, called the blocksize b:

X = [X1, X2 . . . Xo] (3.10)

Let Uj, Wj and Vj represent the ARSVD after j blocks, i.e.

[X1 . . . Xj] ≈ UjWjVT
j (3.11)

with Uj ∈ Rn×n, Wj ∈ Rn×b and Vj ∈ Rb×b. Note that the number of pixels
in the samples, n is larger than the blocksize b. The space of [X1 . . . Xj] is
spanned by UjWj. Adding the next block of data of X and calculating the
SVD gives

[UjWj|Xj+1] = Ũj+1W̃j+1ṼT
j+1

≈ Uj+1Wj+1VT
j+1 (3.12)

where Uj+1 ∈ Rn×b and Wj+1 ∈ Rb×b are submatrices of Ũj+1 ∈ Rn×n and
W̃j+1 ∈ Rn×2b of reduced sizes. Each run the dimensionality retained is
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reduced from twice the blocksize to the blocksize. Repeating this until all sub
matrices of X are processed will give an estimate of the matrix U and matrix
W after a standard SVD. The blocksize is a parameter that has an impact on
the accuracy and the speed of the ARSVD.

3.2.3 Frequency domain implementation

Even in the reduced feature space, evaluating Equation 3.9 is still
computationally demanding. This is because Equation 3.8 is evaluated at
each possible location within a region of interest. A schematic overview
of how the spatial algorithm operates is given in Figure 3.4. It can be
observed that the calculation of each element of y(~s) is analogous to a filter
operation or equivalently a cross-correlation operation. Hence we can make
use of the fact that a cross-correlation operation in the spatial domain can
be written as, a much less demanding, element wise multiplication in the
spectral domain. The conversion to the spectral domain and back again can
be done by an efficient implementation of a discrete Fourier transform, thus
resulting in a net gain in processing time. As a result the processing time of an
implementation in Matlab on a desktop PC was reduced more than tenfold.

Only considering the k-th element of vector ~y(~s) from Equation 3.8 we
have

yk(~s) =~tk~x(~s) (3.13)

with~tk ∈ R1×n the k-th row of T ∈ Rm×n. If~tk is reshaped to t̂k ∈ Rv×u it can
be seen as a correlation kernel, as seen in Figure 3.5, which is shifted over the
ROI.

ROI within the face.

u
v s1

s2

Figure 3.5: Applying the kernel t̂k to the image. The similarity between the
kernel and the image is calculated at all locations (s1, s2). Each row in T can
be considered to be a single kernel.

At each location~s this can thus be written as:

yk(~s) = ∑
u

∑
v

t̂k(u, v)x(s1 + u, s2 + v). (3.14)
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Because correlation in the spatial domain corresponds to an element wise
multiplication of the signal with the complex conjugate of the correlation
kernel in the spectral domain [32], we get:

F (yk(~s)) = F (t̂k(~s))F (x(~s))∗ (3.15)
Yk = T̂kX∗ (3.16)

where ∗ denotes the complex conjugate and boldface printing denotes the
representation in the spectral domain. The k-th elements of all feature vectors
yk(~s) at all locations ~s are given by the inverse Fourier transform of Yk.
After calculating all ~yk planes in the region of interest all the feature vectors
are known at all locations in this region of interest. In Figure 3.6 this is
graphically illustrated. Note the difference with Figure 3.4. All the elements

IDFFT2

ROI IDFFT2

DFFT2

IDFFT2

X(~s)

y1

x(~s) ~y(~s)

T1

ym

Tm

yk

Tk

Figure 3.6: Feature extraction in the spectral domain.

of ~y(~s) are calculated for all locations with one multiplication per element.
The spectral correlation kernels, T̂k, can be pre-calculated during training

thus keeping the number of calculations minimal.
In Appendix C the computational complexity of the frequency domain

implementation is compared to the Viola and Jones implementation, which
is known for its efficiency and speed. The complexities of MLLL and VJ are
not essentially different.

3.3 BILBO

The landmarks are disturbed by two types of errors: noise and outliers. The
noise refers smaller errors and will be present in every estimate. If a sufficient
number of landmarks is used, the effect of noise on the registration will be
limited [7]. The outliers are the larger errors, which will seriously distort
the registration. In order to reduce these larger errors, we present an outlier
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detection and correction method named BILBO. Although we assumed the
landmarks to be independent for the derivation of MLLL in Section 3.2, we
will now explicitly use the dependence of the locations of the landmarks to
correct outliers.

In related research fields subspace methods are used as an effective tool
for removing noise from images. This has been done by, amongst others,
Muresan and Parks [52], Goossens et al. [33] and Osowski et al. [55].
By keeping only the dominant features in the subspace and subsequently
projecting back to the image space, the noise is reduced. Here we apply the
same principle onto the shape. We define a subspace and BILBO projects the
shape there and back again [63]

3.3.1 Theory

Correct shapes are assumed to lie in a subspace of R2d with d the number of
landmarks. Incorrect shapes, containing one or more erroneous landmarks,
are assumed to be outside this subspace. Consider a measured shape~s ′ that
consists of a part ~s which fits the subspace Rn with n < 2d and an error ~ε
which cannot be represented in this subspace.

~s ′ =~s +~ε (3.17)

Erroneous landmarks correspond to a pair of large elements, εi, of~ε. BILBO
aims to find those landmarks and correct them. We can estimate the error on
the measured shape~s ′ by

~ε =~s ′ −
(

BBT(~s ′ −~µs) +~µs

)
(3.18)

Large elements of~ε indicates an outlier. If for a certain landmark the error is
above a threshold, τ, its location is replaced with the location after projection.

~s ′i =~si ∀i
∣∣|~εi| > τ (3.19)

This procedure is repeated until convergence has been reached, which is
usually already after one iteration.

Training BILBO is done by finding the largest variations for all
normalized training shapes. Normalised means that the shapes are aligned
to a reference shape. The reference shape, which is the average shape
when the found face coordinates have been scaled between 0 and 1. Our
implementation is explained in Appendix B.1.

Applying BILBO is schematically shown in Figure 3.7. It shows how the
error,~ε, is calculated. The error is used to determine which landmarks seem
to be wrong and need to be corrected. This is done repetitively until all |~εi|
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are below the adaptive threshold τ. In Appendix B.2 this will be discussed in
more detail.

Though simpler, BILBO shows a resemblance to the Ransac algorithm [29]
where also a distinction between "inliers" and "outliers" is made. Also, if too
few landmarks are used, BILBO could fail. In this case, a restoration method
based on minimizing an expected restoration error. e.g. [66] could provide
an alternative.

update~i
~s = BBT~s ′ τ = rc 1

d ∑d
i=1 |~εi|

~si
′ =~si ∀i

∣∣ |~εi| > τ

τ

reset~i

Yes

No

r = r + 1

~s ′new

~s−µs +µs

δ

~ε
~ε =~s−~s ′

~s ′new

~s ′new

~s ′

~s ′new
=~s ′?

~s ′new

Figure 3.7: A schematic overview of BILBO. The vector ~i keeps track of
the landmarks to be updated. A detailed description can be found in
Appendix B.2.

3.4 The Repetition Of Landmark Locating

The training images have been registered to a standard scale and pose before
extracting the transformation matrix T and the parameters of Equation 3.9.
Therefore, these do not fully model the orientation variations that occur in
the images when landmarking. Because of this, MLLL would perform best
on registered faces. This is, of course, normally impossible as landmarking
is one of the steps of registration. We therefore propose to iterate the
landmarking procedure. This procedure will be called: The Repetition Of
Landmark Locating (TROLL). Once landmark candidates have been found,
the image is registered and the landmarking is repeated on the registered
image. We use MLLL, in combination with BILBO as the landmarking
method, but other landmarking methods could also be used iteratively in the
same manner. The processing time is linear with the number of iterations.
We will choose the number of iteration such that further iterations yield no
significant improvement.
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3.5 Conclusions

The landmarking method presented in this section, MLLL, is based on
Bayesian classifiers and is presented with a new theoretical framework based
on maximum a posteriori. Two important extensions are proposed. BILBO
is an outlier correction method and TROLL an iterative implementation of
the combination of MLLL with BILBO. Although the setting of this paper
is landmarking on facial images the algorithms can be applied to many
landmark versus background classification problems in images.

Two solutions to implementation issues are presented, namely the
ARSVD and a spectral template matcher. The first makes it possible to do
a singular value decomposition on large data with sufficient accuracy.

In Section 3.2 we assumed the landmarks to be independent. This
assumption is known to be a simplification of the truth. Dropping this
assumption very likely will improve the accuracy and robustness further,
because using this dependence in hindsight, as BILBO does, has already
shown to improve the results.

In Chapter 4 we will discuss the tuning and training of MLLL, BILBO
and TROLL. An extensive parameter optimization will be used to tune the
algorithms and test the proposed methods.
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Chapter 4

Landmarker optimization by
parameter tuning

4.1 Introduction

In my dictionary [1] the second meaning for the verb tuning reads: to make
an engine work as well as possible. How to tune is completely dependent
on the task ahead. The settings on a racing bicycle can be completely
different for a curvy and hilly track than for a track with predominantly
straight stretches of road. Tuning your bicycle before a ride can make all the
difference, between a winning combination and a so called Did Not Finish
(DNF) guarantee. Virtually every one has done it: tune something. Some
people tune their bicycle, car, computer, clothing, phone or any other thing.
We tune a landmarker.

MLLL, BILBO and TROLL all have parameters that have a strong
influence on their own and each other’s performance. In Section 4.2 we

"Piled Higher and Deeper" by Jorge Cham. www.phdcomics.com
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outline the experiments and we will empirically analyse the relation of the
parameters of MLLL to the performance of the algorithms.

An evaluation of the proposed methods and a comparison to other
methods are presented in Section 4.3, showing that MLLL, especially with
the extensions BILBO and TROLL, has a good performance. TROLL yields
an error of 3.3% of the interocular distance. This error is obtained with a
landmarker of which some of the parameters have not been optimized for
specific landmarks, but for the entire set of landmarks. Tuning MLLL for
each landmark individually is likely to improve the recognition performance
further.

Finally, in Section 4.4 the conclusions are presented which show
that the MLLL could be improved significantly compared to the initial
implementation.

4.2 Training and tuning

In this section we will discuss the training and tuning of the parameters of
MLLL, BILBO and TROLL. The performance of these algorithms has a strong
relation to the choice of the parameters.

First, we start with discussing the databases used. Second, this section
will focus on tuning of the various parameters and their influence on the
algorithms. An overview of these parameters and their final values is given
in Table 4.1. Repeatedly one parameter was optimized while all others were
kept fixed until a stable solution was reached. We present only the results of
the final parameter settings.

In order to evaluate the performance of the methods used we used the
same error measure as Cristinacce and Cootes [24]. The error measure, me
is the mean euclidean distance between the landmarks and the manually
labelled groundtruth coordinates as a percentage of the interocular distance
∆ocl.

me =
1

n∆ocl

n

∑
i=1

√
δ2

i,x + δ2
i,y (4.1)

All results in this section are obtained by landmarking images in the
training set. The final results obtained with the fully tuned algorithm on the
testing sets are given in Section 4.3.

Sometimes the full parameter space was not explored but only the
part where an optimum could be expected because exploration of the full
parameter space is not feasible due to time constraints. Although the authors
made an effort in finding a good solution it may, therefore, be a local
optimum.
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Table 4.1: Overview of the tuning parameters and chosen values.

Parameter final value
MLLL

Face size 384 [px]
Template size Nose (n = v× u) 48x64 [px]
Template size Eye (n = v× u) 64x96 [px]
Template size Mouth (n = v× u) 64x96 [px]
Relative distance to the landmark 25 [%]
ARSVD blocksize (b) 500
Number of features (m) 219
Explained variance Landmark 81 [%]
Explained variance Background 100 [%]
Explained variance Total 98 [%]

BILBO
Maximum number of iterations (r) 3
Minimal threshold (τmin) 0.055
Error weight (c) 1.15
Number of features in subspace 1

TROLL
Number of repetitions 3

4.2.1 Databases used

We used two databases from which we drew several datasets for the
experiments. Both the FRGC 2.0 [56] and the BioID [43, 35] are publicly
available. For testing we only used images in which the face was found by an
unsupervised face finder, in this case the Viola and Jones [69] classifier from
the OpenCV library with the "frontalface_alt2" cascade [40].

The BioID database consists of 1521 images, taken from 22 persons, which
vary in pose, scale and illumination conditions, but which are mainly frontal.
All images have been landmarked manually. The Viola-Jones face detector
found a face in 1459 of the images (95.9%).

In total, the FRGC 2.0 database contains 39328 images, roughly one third
of which are low quality images (LQ) and two third are high quality images
(HQ). The FRGC 2.0 comes with hand labelled ground truth locations for
four landmarks: the eyes, nose and mouth. We split the FRGC into a training
set and a testing set: a training set containing 19674 images with subject ID
number 4519 or lower and a testing set containing 19427 (98.8%) found faces
in the 19654 images with subject ID numbers 4520 or higher. Both sets contain
images from HQ and LQ.
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4.2.2 Tuning MLLL

The MLLL has many parameters to tune. In Table 4.1 an overview of these
parameters is given. For all parameters we started with an educated guess.
Repetitively one parameter was optimized while the others were kept fixed.
This was done until for all parameters a final setting was found, based on the
landmarking performance in terms of either speed of accuracy.

It was possible, by reusing intermediate results, to keep the training of the
algorithm sufficiently fast. Testing the algorithm was however slow because
it had to be redone for each new parameter choice. In order to limit the tuning
time, the parameters were tuned by landmarking the first 2000 images of the
FRGC training set. This limitation implies the risk of overtraining on the first
2000 images of the training set. Verification on the larger dataset showed that
this did not happen. Finally, after all parameters have been optimized the
error measure, me calculated over the first 2000 images of the FRGC training
set is 4.06 and over the full set it is 3.89. The fact that over the full set the error
is lower suggests that there has been no significant overtraining in the tuning
of the parameters.

Image size and landmark region of interest size

Since larger images imply larger areas to scan, the predetermined upper
bound was an image size of 384 × 384 pixels. Experiments showed that
smaller images resulted in larger errors. Therefore, the image size was set
to 384× 384. Note that for computational reasons we chose not to use images
larger than 384× 384. Improvement might be possible here.

Experiments with the template sizes showed that landscape shaped
templates yielded lower errors than square or portrait shaped templates. For
the eyes a template size of 64 × 96 gave best results. For the nose and the
mouth the maximum performance was reached with templates of 48× 64.

Selection of landmark and background training samples

In order to create a good separation between the landmark samples and the
background samples, the background training samples should not include
landmark templates. In Figure 4.1 we illustrate how the centre of the
background training sample must have a minimal distance to the centre of
the landmark. The minimal distance is relative to the width and height
of the image, resulting in elliptical regions from which the centres of the
background samples are taken. Experiments showed that a distance larger
than 0.2 gave significantly better results than smaller distances. To be on the
safe side this parameter was set to 0.25. The ellipse denoting the maximum
distance had the same radius as half the template size, resulting in an
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elliptical doughnut where the centres of the background training samples are
taken from.

Figure 4.1: Training sample selection. The landmark training sample is a
rectangular region around the landmark, denoted with the solid rectangle
and cross. Within this region a subregion is defined. This elliptic doughnut
shaped area is the region where the centres of the background training
samples, denoted by the pluses, are chosen from. Three examples are given
as rectangles with a dashed border.

Block size

The block size in the ARSVD algorithm must be large enough to capture
all the variation. It turned out that it is not a parameter with a very large
influence on the final result as long as it is larger than 300. To be on the safe
side we chose 500, as illustrated in Figure 4.2. For the HQ smaller block sizes
would be allowed than for the LQ. In Table 4.2 the amount of kept variance
for a block size is given for both Landmark and Background samples. In
Figure 4.3 the amount of kept variance is illustrated for a blocksize of 500. It
shows clearly that each time a block is added the variance within the blocks is
modelled better. Finally near 100% of the variance in the new block is already
modelled by the data.

Dimensionality reduction

MLLL has four parameters that determine the dimensionality reduction of
the feature vector. The first two are the dimensionalities of the subspaces
of the landmark and background data, cf. Equations A.1 and A.2 in
Appendix A. The third parameter is the dimensionality of the joint subspace
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Figure 4.2: The error me as function of the blocksize. Block sizes smaller then
300 will not result in enough features. It is clear that below 500 features the
error grows when the number of features is reduced. More features do no
improve the performance. The black line indicates the chosen value.

of background and landmark data, cf. Equations A.3 to A.7 in Appendix A.
Instead of these dimensionalities, we will take the amount of variance
retained in the, respective, subspaces as tuning parameters. The fourth
parameter is the number of most discriminating features that is selected in the
final feature reduction step. For every parameter is a trade-off between speed
and accuracy. The chosen setting for each of these parameters has an impact
on the others. Fewer features will give faster performance but too few will
make the error me too large. Too many features will lead to overfitting, again
resulting in poor performance. The choice of these parameters are discussed
in the following subsubsections. In that procedure we start with an educated
guess and after that optimise the parameters one at a time, converging to a
hopefully global optimum.

Explained variance landmark templates

Figure 4.4 shows that there is an optimum around 81% of kept variance,
which is mainly due to a local minimum in the landmarking errors for the
eyes. Errors for the eyes are the same for kept variances above 88% because
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Figure 4.3: The upper two graphs show the amount of variance which is
kept after each feature reduction step. This goes to 100% when the data
are modelled better and better. The lower graphs show the cumulative kept
variance of the total data as a function of the number of processed blocks.

the amount of kept variance due to the ARSVD is 88%.

Explained variance background templates

There is little room to vary this parameter. The total amount of kept variance
after the ARSVD is 94% for the eyes and even less for nose and mouth.
Keeping 94% or more of all features means de facto keeping all features. The
drop off is very steep because at 94% all 500 features are kept while going
below 93.5% only few features are kept. Therefore this parameters is set to
100%, keeping all features in order not to limit the choice for the number of
features m in Section 4.2.2.

Combined explained variance

As we can see in Figure 4.5 the influence of the overall explained variance is a
rather limited. It is, apart from noiselike fluctuations, almost flat throughout
its range. Important considerations for this parameter are computational
speed during training and the fact that we want to keep enough features for
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Table 4.2: Amount of kept variance using a blocksize of 500 and training on
all the data of the FRGC training set.

Landmark Background
Eye 88.0 [%] 84.2[%]
Nose 96.6 [%] 94.0[%]
Mouth 91.8 [%] 90.1[%]

the next phase to be effective. Nonetheless, we choose to tune our system to
98%, the local optimum.

Number of features during feature selection

The last feature selection step selects the number of features to be kept. As
was explained in 3.2.1 the criterion here is the maximum of the quotient of the
mean and the standard deviation. Figure 4.6 shows how the final selection of
features enables one to find a local optimum. Not all landmarks have a clear
optimum. For the eyes it is clear that around 150 features is best. For both
the nose and the mouth, above a certain value the error becomes more or less
constant. The value of 219 was the overall best.

Discussion

Interestingly, the me of 3.1 for the mouth on the LQ images is lower than the
me of 5.8 for the HQ images. This is against the intuition that the error on HQ
images should be lower. If we however calculate the errors for the full data
set this effect disappears, as we would expect. The HQ error is 3.7 and the
LQ error is 4.3. We, therefore, consider this to be a data anomaly.

4.2.3 BILBO

The BILBO outlier correction algorithm has four parameters to tune. The
number of iterations, the minimal threshold, the weight factor and the
number of features that are kept. Since the FRGC database has ground
truth coordinates for four landmarks BILBO uses eight input features. In
Figure 4.7 the first three modes of variation in the subspace are visualised in
shape space. Experiments showed that by keeping only the first feature in
the subspace the best results were obtained. The number of iterations was
set to 3 because convergence was reached at that value for all the shapes in
the training data. The final two parameters, the minimal threshold and the
weight factor, were both optimized. The results are shown in Figure 4.8. The
minimum is found for a minimal threshold, τmin of 0.055 and an error weight

52



4.3. Final results

75 80 85 90 95 100
2

3

4

5

6

7

8

9
Explained Landmark variation

E
rr

or
 m

e

kept explained variance [%]
75 80 85 90 95 100

2

3

4

5

6

7

8

9
Eye

E
rr

or
 m

e

kept explained variance [%]

75 80 85 90 95 100
2

3

4

5

6

7

8

9
Nose

E
rr

or
 m

e

kept explained variance [%]
75 80 85 90 95 100

2

3

4

5

6

7

8

9
Mouth

E
rr

or
 m

e

kept explained variance [%]

 

 
C
LQ
HQ

Figure 4.4: The error, me, as function of the amount of explained landmark
variance. The black line indicates the chosen value.

c of 1.15. The mesh denotes the me without any outlier correction of 4.1% for
reference purposes.

Examples of both correct and erroneous outlier corrections are given in
Figure 4.9.

4.2.4 The Repetition Of Landmark Locating

The number of iterations determines how often we rerun the landmarker.
Here that is MLLL in combination with BILBO. The choice of the number of
iterations will be based on a trade off between accuracy, landmarking error
and processing time. Since this parameter is linear with the total time needed
we want to keep it as low as possible. In Table 4.3 it can be seen that with
each iteration the error reduces, but not significantly after the 2nd iteration.

4.3 Final results

In this section the results of the landmarking experiments are presented and
discussed. All tuning parameters are set to values as found in Section 4.2.2
and given in Table 4.1. In all experiments we distinguish between the high
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Figure 4.5: The error, me, as function of the amount of total or overall
explained variance. The black line indicates the chosen value.

quality images (HQ), the low quality images (LQ) and the combined results
(C). More information on the datasets has been given in Section 4.2.

We present the results for three combinations: MLLL, MLLL+BILBO, and
TROLL, which iterates MLLL+BILBO. Also we provide the results of two
reference algorithms.

4.3.1 Reference algorithms

For reference purposes we provide two basic algorithms. The first returns the
a priori landmarks given the face location and size as found by the Viola and
Jones face detector. It will be denoted as the a priori landmark locator. The
second algorithm is the OpenCV [40] implementation of the Viola and Jones
face finder, but now trained for finding landmarks on the same datasets as
MLLL [62].

4.3.2 Results

The results of all experiments are given in Table 4.4. With a few exceptions it
can be said that both BILBO and TROLL improve the performance of MLLL.
On the eyes the Viola and Jones landmark locator performs better on the LQ
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Figure 4.6: The error, me, as function of the amount of total or overall
explained variance. The black line indicated the chosen value.

images and MLLL run on the HQ images. In general all methods perform
better on the HQ images than on the LQ images. Virtually all methods
perform better than the a priori landmark locator. Cumulative error plots for
both the HQ and the LQ are given in Figures 4.10 and 4.11. In the latter case
it can clearly be seen that for the eyes the Viola and Jones implementation
outperforms all other methods, while on the mouth it lacks performance.
Comparing the results for HQ and LQ shows that for the eyes the difference
is large but at the same time for the nose and the mouth it is a lot smaller.

4.3.3 Discussion

MLLL

It is remarkable that for both nose and mouth there is a rather small difference
between the HQ and the LQ. For the nose the LQ error is 1.2 times larger than
the HQ error. For the mouth this is 1.4 times. On the contrary the eyes show
a big difference with a 2.8 times larger error for the LQ data.

The weakest performance of MLLL is on the LQ eyes when trained on
the FRGC training set. We suspect several causes of this. First of all, the
illumination conditions which severely darken the eyes. Also the camera
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Figure 4.7: The three modes with the highest variation in the BILBO subspace.

Table 4.3: The me for all landmarks for five iterations. Changes beyond the
second iteration are not significant. Boldface denotes the minimal value.

Landmark 1st 2nd 3rd 4th 5th
Combined 3.8 3.5 3.5 3.4 3.5
Eyes 3.2 3.2 3.1 3.1 3.1
Nose 4.5 4.1 4.1 4.1 4.1
Mouth 4.4 3.6 3.6 3.5 3.5

is sometimes out of focus. In the LQ images some people wear glasses,
sometimes with a glare on it. Finally, people sometimes turn their eyes aside
or close their eyes at the moment the image is taken. In Figure 4.12 some
examples are shown. From these it can be seen that these causes affect the
nose and mouth to a lesser degree than the eyes. This is supported by the
fact that MLLL performs much better on the LQ data when trained on the
BioID database, which does not contain such deteriorated samples. It is also
true that for images in the testing set with the imperfections as shown in
Figure 4.12, MLLL makes the worst errors. Having poor quality images in
the training set apparently does not make MLLL more robust.

BILBO

The effect of BILBO can be analysed in more detail than just as the reduction
of the error me after MLLL. In Figure 4.13 the change of the error per image
are shown as the blue solid line. For illustrative purposes the errors are
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Figure 4.8: The error, me as function of both the minimal threshold τmin and
the error weight c. The surface indicates the error when using BILBO. The
mesh denoted the error without applying BILBO for reference purposes.

sorted by the improvement by BILBO. On the left negative improvements
represent the images where the estimates of the landmark coordinates had
been deteriorated. Moving to the right it is clear that most of the images
are not changed at all. Finally on the right the improvements are shown.
The area between the blue solid line and the null-line is a measure for the
total improvement. For the low quality images the positive improvement by
BILBO is eleven times the deterioration. For the high quality images the effect
is only just positive (1.3 times). The more detailed information in Table 4.4
shows that BILBO improves the results for all landmarks and datasets with
the exceptions of the HQ images of the eyes when training on the FRGC
training set and testing on the FRGC testing set. This is however only a very
small effect.

TROLL

For the nose and the mouth TROLL yields the best results. The improvement
caused by TROLL is analysed in the same way as the improvement of BILBO.
This is also illustrated in Figure 4.13. Analogous to BILBO the gain is highest
on the low quality images, namely 6 times. For the high quality images
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Figure 4.9: Landmark outlier correction. The crosses denote the landmark
location by MLLL while the dots denote the corrected location. In the left
image the successful detection and correction of an outlier is shown. The
right image shows an example where the input data are so bad that BILBO is
unable to do anything meaningful.

the improvement is a factor of 1.7. In contrast to BILBO there is a smooth
transition from deterioration to improvement without a dead zone where the
coordinates are not adjusted.

It proved that TROLL was not able to produce any intelligible results if
the initial face bounding box had dimensions so that some landmarks fall
outside the search areas. This would cause MLLL in the first run to give just
any random position, and thus TROLL can drift away. An example is given
in Figure 4.14. Because the face finder found the face on the wrong scale,
the nose and mouth are not within the search regions, denoted by the red
rectangles. The results of MLLL, BILBO and TROLL are thus not meaningful.
In the FRGC testing set there are 810 images for which one of the landmarks
is not in the search area. The impact on the overall performance is limited: it
increases the error measure roughly 0.1%.

Comparison to other work

Several papers report results on eye-finders. Unfortunately the authors were
not able to find any work for nose and mouth localization that could be
compared on the FRGC database. Here we only focus on the ones that report
results on the eyes and the FRGC for ease of comparison.

There is a difference between the shape Shape Optimised Search (SOS) by
Cristinacce et al. and our proposed methods BILBO: SOS is an integral part of
the approach and BILBO is performed as an outlier correction method after
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Table 4.4: The me for all methods. The results for MLLL, MLLL+BILBO and
TROLL are shown. As well as two reference methods.

Combined Eyes Nose Mouth

Training set: FRGC training set, Testing set: FRGC testing set
C HQ LQ C HQ LQ C HQ LQ C HQ LQ

A priori 7.3 7.2 7.6 6.2 5.9 7.0 8.2 8.5 7.5 8.5 8.4 8.8
Viola Jones 4.2 3.5 5.6 2.9 2.4 3.9 4.4 3.5 6.1 6.6 5.8 8.3
MLLL 3.9 2.7 6.3 3.8 1.9 7.5 4.3 3.6 5.6 3.8 3.4 4.5
BILBO 3.5 2.7 5.0 3.2 1.9 5.4 4.1 3.6 5.0 3.6 3.3 4.3
TROLL 3.3 2.5 4.9 3.1 1.9 5.4 3.9 3.4 4.8 3.3 2.9 4.0

Training set: FRGC training set, Testing BioID
A priori 10.6 8.6 13.3 11.9
Viola Jones 9.0 6.7 11.8 11.3
MLLL 7.5 5.7 10.4 8.3
BILBO 6.6 5.3 9.0 6.9
TROLL 6.3 5.3 8.1 6.6

Training set: BioID, Testing set: FRGC testing set
C HQ LQ C HQ LQ C HQ LQ C HQ LQ

A priori 8.3 8.4 8.2 7.7 7.6 7.9 8.4 8.7 7.9 9.3 9.6 8.9
Viola Jones 7.7 6.4 10.3 3.8 3.4 4.7 13.3 10.1 19.9 9.1 8.2 10.9
MLLL 6.9 6.0 8.6 3.3 2.5 4.8 12.5 13.1 11.5 8.5 6.0 13.4
BILBO 5.6 4.9 6.9 3.4 2.6 4.9 8.5 8.2 9.2 7.0 6.1 8.5
TROLL 5.3 4.4 7.0 3.3 2.4 4.9 8.0 7.1 9.6 6.8 5.8 8.7

landmarking.
Wang et al. [70] used Adaboost in combination with multiple weak

probabilistic classifiers. Using non FRGC training data from multiple sources
they report a mean Euclidian distance error on the eyes of 2.67% of the
interocular distance on the FRGC 1.0 database, which is a subset of the FRGC
2.0 database. Their results can be compared to ours because they tested on
the FRGC 1.0. The FRGC 2.0 database is larger but includes the FRGC 1.0
database. Wang et al. seem to have a similar, but slightly better result on the
eyes than the Viola and Jones algorithm which has an me of 2.9 for the Viola
and Jones method and a 3.1 for TROLL.

Campadelli et al. [17] used a combination of Haar classifiers and Support
Vector Machines. They report a 2.65% error on the HQ data and a 3.88% error
on the LQ data of the FRGC 1.0 database. These results are also similar to
the ones we obtained with a Viola and Jones detector. The MLLL performs
significantly better on the HQ data while on the LQ data it is worse. These
results are summarised in Table 4.5.

In previous work by the authors [9] results for earlier versions of MLLL,
which were not tuned nor optimized, and BILBO were given. See Table 4.6.
These versions were trained on the BioID database and tested on the FRGC
1.0 database. The new results are significantly better for MLLL. For newly
trained BILBO the results on the mouth and the nose yield slightly higher
errors. This can be explained by the fact that BILBO used 4 landmarks

59



Chapter 4. Landmarker optimization by parameter tuning

0 2 4 6 8 10
0

20

40

60

80

100

P
or

tio
n 

er
ro

rs

Error in % of the interocular distance

Cumulative error, on HQ images.

0 2 4 6 8 10
0

20

40

60

80

100

P
or

tio
n 

er
ro

rs

Error in % of the interocular distance

Eyes

0 2 4 6 8 10
0

20

40

60

80

100

P
or

tio
n 

er
ro

rs

Error in % of the interocular distance

Nose

0 2 4 6 8 10
0

20

40

60

80

100

P
or

tio
n 

er
ro

rs

Error in % of the interocular distance

Mouth

 

 

Viola Jones
MLLL
BILBO
TROLL
A priori

Figure 4.10: Cumulative error distribution. Landmarkers trained on the
FRGC training set. Testing on HQ of the FRGC testing set.

while the ‘old BILBO’ in [9] used 17 and therefore could make better use
of the dependency of the landmarks. Note that MLLL and BILBO were
tuned using the FRGC 2.0 database. The tuned parameters were not changed
when training on the BioID database. Therefore we do not have optimal
performance when training on the BioID database. The numbers are given
in Table 4.6. This shows that tuning can lead to significantly better result for
MLLL. Also it shows that BILBO using more landmarks is useful for BILBO.

The MLLL method presented here used one set of parameters to find
eyes, nose and mouth. These parameters have not been optimized for finding
the eyes as was the case with the methods we used for comparison. Seeing

Table 4.5: Comparing other work on the eyes. Boldface denotes the
minimum. Italics denotes an estimate not provided by the authors.

Combined HQ LQ
Wang et al. [70] 2.67
Campadelli et al. [17] 2.7 2.65 2.88
Viola and Jones [68] 2.9 2.4 3.9
Troll 3.1 1.9 5.4
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Figure 4.11: Cumulative error distribution. Landmarkers trained on the
FRGC training set. Testing on LQ of the FRGC testing set.

that these specifically-for-the-eyes-trained locators perform similarly we are
confident to say that our results have a good probability of performing better
when tuned separately for each landmark. Finally, all methods are coming
close to the accuracy of the manual landmarks. The manual groundtruth
landmarks are sometimes, according to the authors, with larger error then
the proposed methods. Figure 4.15 provides some examples. Here we
see that the manual landmarks of the nose are not placed consistently,
at least for these examples. Unfortunately the accuracy of the manual
landmarks is unknown. The manual landmarks are given as natural,
rounded, numbers. Locally assuming a uniform distribution for the real
locations the quantisation error can be calculated to be in the order of 0.4
pixels. This corresponds to a me in the order of 0.2%. This is less than one
tenth of the mean error and therefore not likely to significantly enlarge the
errors.

Recommendations

For both training databases MLLL, BILBO and TROLL are trained using
the same tuning parameters. Optimising for each landmark will surely
improve the results because the current setting is probably a local optimum
for minimizing for all landmarks at once. In the same fashion we treated the
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Chapter 4. Landmarker optimization by parameter tuning

Figure 4.12: Examples of LQ training samples that, for the eyes, deteriorate
the landmarkers. Clockwise from the upper left we have illumination,
illumination in combination with focusing on the background, looking
sideways and finally glasses with glare on them. Having these in the training
set does not improve the performance.

HQ and the LQ data equally. If we would have optimized MLLL for HQ and
LQ and each landmark separately, the results are likely to improve.

In Section 3.2 we assumed the landmarks to be independent. This
assumption is known to give a simplification of the truth. Not doing this
very likely will improve the accuracy and robustness further because using
this dependence in hindsight, as BILBO does, already improves the results.

4.4 Conclusions

The landmarking method presented in Chapter 3, MLLL, has been optimized.
In this chapter we showed that all methods perform comparable to methods
proposed by published state-of-the-art methods, even though we present
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Figure 4.13: The error reduction by BILBO and TROLL, sorted by the
improvement. The blue line denotes the error reduction by BILBO. The green
dashed line denotes TROLL. Negative values show a deterioration of the
results and positive values an improvement.

a more general implementation whereas others present a landmarker
specifically for the eyes. TROLL has an overall error me of 3.3% of the
interocular distance, which is far better than results obtained with earlier
versions of MLLL. This shows that training on more data, as well as tuning
the parameters, is worthwhile. BILBO also proved to be a useful tool, even if
operated on only 4 landmarks. Iterative implementation of MLLL and BILBO
proved to be a further improvement of the results significantly. TROLL shows
the best overall performance of the presented algorithms.

It is to be expected that the results for the individual landmarks can be
further improved by parameter tuning for each landmark individually. The
same is true for training separately on the HQ of LQ data.

The spectral template matcher speeds up the execution of MLLL tenfold.
Both the spectral template matcher and ARSVD were essential for final
performance in terms of speed, accuracy and the possibility to investigate
the parameter space while tuning.

Finally, because the accuracy of the manual groundtruth data the quality
of current state of the art landmarkers is difficult to calculate reliably and
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BILBO
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GroundTruth

Figure 4.14: Poor performance of all algorithms because the face finder found
the face on the wrong scale. The landmarks lie outside the search areas
denoted by the red rectangles.

difficult to compare. Even though this might pose a problem in evaluating
the quality of the landmarkers this should not limit the ambition to improve
them.
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4.4. Conclusions

Table 4.6: Comparing MLLL and BILBO to older work. Boldface denotes the
minimum. Trained on the BioID database, tested on the FRGC. It should be
noted that the old versions were tested on the FRGC version 1 database while
the new ones were tested on our testing set of the FRGC version 2.

Combined Eyes Nose Mouth
old MLLL 10.3 6.2 17.1 7.7
new MLLL 6.9 3.3 12.5 8.5
old BILBO 6.2 5.4 8.0 5.6
new BILBO 5.6 3.4 8.5 7.0

TROLL 5.3 3.3 8.0 6.8

Figure 4.15: This figure provides some examples where the landmarkers
MLLL, BILBO and TROLL give an equal or better estimates than the manual
landmarks. The green circle denotes the manual position and the red cross
denotes the position found by TROLL.

65





Chapter 5

Assumptions and the use of
prior knowledge

This chapter is a combination of work presented in 2007 at the 28th Symposium
on Information Theory in the Benelux [9] and the Biosignals 2009 conference in
Porto [10].

5.1 Introduction

5.1.1 The benefits and risks of assumptions

Making assumptions in one’s social interaction can lead to strange or
uncomfortable situations. When one wants to give someone a gift most
people try to give something of which they assume that the recipient will
like it. Such assumptions will make the process of choosing a gift more
efficient. However, when this assumption proves to be faulty the results
can be disappointing, though not catastrophic. An example with a greater

"Piled Higher and Deeper" by Jorge Cham. www.phdcomics.com
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risk can easily be thought of: a faulty assumption about a traffic light. If it is
always red, until one has stopped, and always switches to green immediately,
because no other traffic is near, then one might be tempted to run the red light
under the assumption that no one else will be crossing. One can imagine the
outcome when the assumption proves to be untrue. Assumptions, therefore,
are not to be made lightly but with great care and after proper consideration.
In the example of the gift it would be very useful to give something of which
there is a-priori knowledge that the gift will be appreciated, for example,
because it was on a wish-list.

That assumptions are not without risk applies to both real life and
science. Scientists make assumptions, even ones they know to be untrue,
for various reasons. Good reasons could be simplification of the problems
or the statistical probability of the assumption to be true. Assumptions often
enable the scientist to make the right decision with minimal effort.

Going back to Chapter 3 and the analogy between a classifier and Mount
improbable, we saw that the closer a species ended up near the wolf the more
probable it was a wolf. However the Tasmanian tiger also ended up very high
up the mountain, even though it came through a completely different path.
Just using height thus carried the danger of accidentally choosing the tiger
instead of the wolf. If we would however not only look at the result but also
the path the tiger took up Mount Improbable, if we used prior knowledge,
then a mistake would be far less likely.

When the MLLL was designed it was mainly based on intuition. Working
with the MLLL our insight grew, especially because of the good results by
BILBO. We learned that the probability of shape, the collection of landmark
locations, was also a factor in the equation. This led to the realisation that
we implicitly had made important assumptions. A first experiment [10]
confirmed that there was room for improvement. After that we improved
the initial MLLL algorithm from [8] to a better one in Chapter 3 and 4.
However in this chapter we will address the underlying assumption and
further improvement.

5.1.2 Assumptions in MLLL

In Chapter 3 two important assumptions were made when implementing the
MLLL that appear not to be fully correct. In this section we will discuss them
and propose better ones. The first assumption was that the possible locations
for the landmarks were assumed to be restricted to a ROI. Within this ROI the
probability of the landmark location was assumed to be uniform. The second
assumption was that no correlation existed between the landmark locations,
ie. they were assumed independent. These two assumption, in fact, would
allow facial shapes that would not be realistic, almost like a Picasso painting.
Some valid faces, according to these assumptions, can be seen in Figure 5.1.
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5.1. Introduction

Figure 5.1: Assumption that the landmark coordinates are independent and
uniform distributed over a ROI, these faces which would be equally probable.

Figure 5.2: Assumption that the landmark coordinates are dependent and
Gaussian distributed, these faces seem possible.

It is obvious that these assumption could be improved because any person
would think that only the lady on the left has a real face. The faces of her two
nieces do not look real.

It is easy to see that the x coordinates of both eyes should have an
inverted correlation, while at the same time the y coordinates would have
a proportional correlation. This means that if one eye goes up, the other one
also goes up. If one eye goes in or out, the other eye does the opposite, leaving
the symmetry intact. In Figure 5.2 an artistic impression is shown to illustrate
how the same face would look when the shape is varied in a more probable
way. The image on the left is the original photograph. Her two sisters look
completely different but not as weird or impossible as her nieces in Figure 5.1
do.
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Chapter 5. Assumptions and the use of prior knowledge

The faces of the nice lady, her sisters and nieces as shown in both
Figure 5.1 and Figure 5.2 illustrate the differences in the assumptions between
MLLL and MAP (Maximum Aposteriori Probability estimator). MAP does
not assume all possible shapes to be equally probable but uses the a-priori
knowledge of where the landmarks should be and which variations can be
expected. We argue that this will reduce the number of false positives because
they are too unlikely. Therefore MAP has a higher probability of finding
the proper landmark location than MLLL. The assumptions of uniformity
and independence of the shape are replaced by a priori knowledge that the
landmark coordinates are mutually dependant and the assumption that the
landmarks are Gaussian distributed with a certain mean and variance. It
should be noted that for good face recognition it is imperative to have proper
knowledge of the landmarks and the locations. At the same time it is equally
important for landmarking to have a good knowledge of the face. Duin [27]
already stated that the use of a priori knowledge is useful as long as the a
priori features are different than the ones used for the classifier.

5.1.3 MAP

In Chapter 3 we discussed a landmarker based on a log likelihood ratio
landmarker by [5], namely the Most Likely Landmark Locator (MLLL) [8].
Aiming to improve landmarking on frontal images we argue that the
maximization of the likelihood ratio is a heuristic approach, lacking a formal
proof that this is indeed the best position for the landmark.

We will formalize the likelihood-ratio based method as a MAP
approach [65], thus giving it a solid theoretical foundation and taking the
a priori probability of a landmark location into account. This will prove to
render the method robust against outliers. In order to validate this approach
we performed a simple experiment. We extend the MLLL to a MAP. We then
evaluate all the images in the test set and see if the results are better then
with only MLLL. In Section 5.4 we discuss the experiment in more detail.
Results show that the new method performs significantly better than when
only using the likelihood-ratio, in particular on low quality images.

In this chapter we propose two improvements on the MLLL framework
from Chapter 3. As noted in Chapter 3, two assumptions on the probability
distribution of the shape were made. The first was that the distributions are
uniform. The second assumption is that the probabilities are independent.
In this chapter we drop both. In [10] and [9] we showed that a significant
improvement is made by dropping the first assumption but keeping the
independence between the landmark locations. Here the last assumption,
independence, also is dropped, leading to a significant improvement of
landmarking. The landmark positions are not longer assumed independent.
These, previously unpublished results, are presented and discussed in
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Section 5.5. We will show that MAP performs better than MLLL and
MLLL+BILBO. MAP performs with with equal accuracy but is more efficient
than the iterative implementation, TROLL from Section 3.4. This makes MAP
a clear improvement to MLLL, MLLL+BILBO and TROLL.

5.2 Theory

In this section we will present a theoretical framework for statistical
landmark finding. In particular we will extend a likelihood-ratio based
approach such as MLLL [8] from Chapter 3 to a MAP based approach. For
clarity most of the theory is shortly repeated here. For more details on the
MLLL algorithm see Chapter 3.

The shape~s of a face is defined as the collection of landmark coordinates,
arranged into one column vector. They belong to a face with texture ~x,
measured in a certain region of interest and also arranged into a column
vector. In Equation 3.1 we calculated the maximum a posteriori estimate
(MAP) [65] of the location of the landmarks, ~s∗, given a certain texture ~x:

~s∗ = argmax
s

q(~s|~x) (5.1)

and through the Bayes equality the probability density in Equation 5.1
becomes

q(~s|~x) =
p(~x|~s)
p(~x)

q(~s) (5.2)

where p(~x|~s) is the probability density of the texture ~x given a shape; p(~x) is
the background probability density; and q(~s) is the probability density of the
shape as function of the location~s. The most likely shape ~s∗ is now given by

~s∗ = argmax
~s

p(~x|~s)
p(~x)

q(~s). (5.3)

The first factor of Equation 5.2 is the likelihood-ratio of the texture belonging
to shape ~s over the overall texture probability. The last factor takes the
probability of the shape~s into account. Ideally, one would like to compute~s
from Equation 5.3, given all probabilities and possible shapes. This, however
would be prohibitively complex.

Let~si ∈ R2 denote the column vector containing the spatial coordinates
of landmark i = 1 . . . d and ~xi ∈ Rn the column vector containing the n
pixel values from the texture in a region of interest surrounding the assumed
landmark i.

We still assume the n pixels surrounding the landmark to be independent
between the landmarks,

~s∗ = argmax
~s

d

∏
i=1

pi(~xi|~si)
pi(~xi)

q(~s). (5.4)
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The locations of the landmarks are assumed to be dependent. Equation 5.4
is, due to the argmaxs, equivalent to using the log likelihood

~s∗ = argmax
~s

d

∑
i=1

{
− log

(
pi(~xi|~si)

)
+ log

(
pi(~xi)

)}
+ log

(
q(~s)

)
. (5.5)

Next we assume that the probability of the texture p(~xi|~si) has a Gaussian
probability density with mean µl,i and covariance Σl,i. Likewise, we assume
that p(~xi) has a Gaussian probability density with mean µb,i and covariance
Σb,i. Finally we assume that the shape also has a Gaussian probability
density with mean~µs and covariance Σs. This is justifiable because, especially
after the dimensionality reduction, the data distribution shows a Gaussian
character. Even though Gaussian mixture models might model the data
better, they would be much more complex, therefore, we assume Gaussian
probability densities, even before the dimensionality reduction that will be
discussed later.

pi(~xi|~si) =
1

(2π)
n
2 |Σl,i|

1
2

e−
1
2

(
~xi(~s)−~µl,i

)T
Σ−1

l,i

(
~xi(~s)−~µl,i

)
, (5.6)

pi(~xi) =
1

(2π)
n
2 |Σb,i|

1
2

e−
1
2

(
~xi(~s)−~µb,i

)T
Σ−1

b,i

(
~xi(~s)−~µb,i

)
(5.7)

and

q(~s) =
1

(2π)d|Σs|
1
2

e−
1
2

(
~s−~µs

)T
Σ−1

s

(
~s−~µs

)
, (5.8)

where n is the number of pixels in a sample.
On substitution of Equation 5.8, Equation 5.7 and Equation 5.6 in

Equation 5.5 we get, ignoring the constant terms and the factor 1
2 , a final

expression for the MAP estimate of the shape:

~s∗ = argmax
~si

d

∑
i=1

{
−
(
~xi(~si)−~µl,i

)TΣ−1
l,i

(
~xi(~si)−~µl,i

)
+
(
~xi(~si)−~µb,i

)TΣ−1
b,i

(
~xi(~si)−~µb,i

)}
−
(
~s−~µs

)TΣ−1
s
(
~s−~µs

)
. (5.9)

5.2.1 Dimensionality reduction

Because ~xi consists of a large number, n, of statistically dependent pixels it is
possible and useful to perform a feature reduction. The covariance matrices,
Σl and Σb, need to be estimated from training data. Due to their size, direct
evaluation of Equation 5.9 would be a high computational burden. Due to
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the limited number of training samples available in practice, they would be
rank-deficient or, if not, too inaccurate to obtain a reliable inverse, which
is needed in Equation 5.9. For example, a typical training sample consists
of 6144 pixels while there are only 19674 landmark samples. Therefore,
prior to evaluation of Equation 5.9, the vector ~x will be projected onto a
lower dimensional subspace. This subspace should have several properties.
First of all, its basis should contain the significant modes of variation of the
landmark data. Secondly, it should contain the significant modes of variation
of the background data. Finally, it should contain the difference vector
between the landmark and the background means. The latter is needed for
good discrimination between landmark and background data. The modes of
variation are found by principal component analysis (PCA). This procedure
is the same as discussed in Chapter 4. See Appendix D for details.

Finally the landmark and background densities are simultaneously
whitened such that the landmark covariance matrix becomes a diagonal
matrix, ΛL, and the background covariance matrix becomes an identity
matrix.

5.2.2 Feature extraction and classification

The entire process of feature reduction and simultaneous whitening can be
combined to one linear transformation with a matrix Ti ∈ Rn×m, with n the
dimensionality of the training templates and m the final number of features
after reduction.

~µ′l,i = Tiµl,i, ~µ′b,i = Tiµb,i (5.10)

Λl,i = TiΣl,iTT
i , I = TiΣb,iTT

i (5.11)
~yi(s) = Ti~x(s) (5.12)

Substituting this in Equation 5.9 gives:

~s∗ = argmax
~s

d

∑
i=1

{
−
(
~yi(~si)−~µ′l,i

)TΛ−1
l,i

(
~yi(~si)−~µ′l,i

)
+
(
~yi(~si)−~µ′b,i

)T(
~yi(~si)−~µ′b,i

)}
−
(
~s−~µs

)TΣ−1
s
(
~s−~µs

)
. (5.13)

Note that although Equation 5.13 resembles Equation 5.9, the numerical
result will be different due to the dimensionality reduction. This form is
however computationally far more efficient than Equation 5.9.
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5.3 Implementation

The aim of landmarking is to find the most likely shape. The total
number of possible shapes is over 1014. This makes that it is impossible
to evaluate Equation 5.5 for the entire shape space. We thus need a
optimization algorithm that converges to a good solution in a limited number
of evaluations. For the optimization algorithm we define a cost function,
m(~s,~x):

m(~s,~x) =
d

∑
i=1

{
−
(
~yi(~si)−~µ′l,i

)TΛ−1
l,i

(
~yi(~si)−~µ′l,i

)
+
(
~yi(~si)−~µ′b,i

)T(
~yi(~si)−~µ′b,i

)}
−
(
~s−~µs

)TΣ−1
s
(
~s−~µs

)
(5.14)

which we aim to maximize. The first terms of the summation of Equation 5.14
are the objective functions that are maximized by MLLL. We calculate these
values for the entire region of interest for each landmark. These landscapes
are used as lookup-tables. The mean shape, ~µs, and covariance matrix, Σs,
are calculated from the training data. Since it is not possible to evaluate the
entire parameter space, an optimization algorithm is used to find the optimal
value. In our implementation we used the Matlab implementation of the
Nelder-Mead Simplex (direct search) method [53].

Because the Simplex algorithm tends to get stuck in local optima, and the
landscapes are slightly noisy, with many local optima, the MLLL landscape
is smoothed by a Gaussian filter. In Section 5.5 the size of the filter kernel is
discussed.

5.4 Experiments

In order to evaluate the performance of MAP and compare it to the methods
from Chapter 4 we perform experiments similar to those described in
Section 4.2. We evaluate images and estimate the position of the landmarks.
This is compared to the groundtruth data which is provided with the FRGC
database. Two new methods will be evaluated. First we will evaluate MAP
as discussed in Section 5.2. Secondly we investigate if TROLL, as discussed
in Section 3.4, works with MAP as the engine instead of MLLL. Two datasets
were used. One for training and one for testing. Half of the FRGC database
was used as the training set and the other half as the testing set. The selection
of the datasets from the FRGC database is described in detail in Section 4.2.1.
For MLLL all the settings are used as found in Section 4.2.2. The FRGC
contains high quality images (HQ) and low quality images (LQ). The union
of both set of images we will denote as combined (C).
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5.5 Results and discussion

In Figure 5.3 and Figure 5.4 the cumulative error plots of MLLL, BILBO,
TROLL and MAP are shown. They are split into two sets. The top block
of 4 plots shows the cumulative errors for the high quality images and the
bottom block of 4 plots for the low quality images. The upper right plot of
each block of 4 plots shows the overall error. The upper left plot shows the
error for the eyes. The bottom left and right plots show the graphs for the
nose and mouth, respectively. It can be seen that, although the differences
are small, MAP performs best, or equal to TROLL. The performance gain is
most significant for the LQ images, hence where noise and distortions are
most severe.

0 5 10 15
0

20

40

60

80

100

P
or

tio
n 

er
ro

rs

Error in % of the interocular distance

LQ

0 5 10 15
0

20

40

60

80

100

P
or

tio
n 

er
ro

rs

Error in % of the interocular distance

Eyes

0 5 10 15
0

20

40

60

80

100

P
or

tio
n 

er
ro

rs

Error in % of the interocular distance

Nose

0 5 10 15
0

20

40

60

80

100

P
or

tio
n 

er
ro

rs

Error in % of the interocular distance

Mouth

 

 

1−MLLL
2−BILBO
3−TROLL
4−MAP

Figure 5.3: The cumulative error: high quality images.

The use of a posteriori knowledge that the landmarks are correlated and
that their probability densities are better represented by a Gaussian than by
a uniform probability density improve the results. Without the knowledge
of relationship between the location of the landmarks, the landmarking
becomes worse.

In Table 5.1 the results are given. This table shows the average RMS
error per landmark. The results for MAP are compared to MLLL, BILBO
and TROLL. Also the impact of the filtering on the MLLL without MAP
is investigated. It can be seen that MAP performs better than MLLL and
BILBO. Compared to TROLL there is no significant improvement in accuracy
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1−MLLL
2−BILBO
3−TROLL
4−MAP

Figure 5.4: The cumulative error: low quality images.

by MAP, although there are small differences. We can also conclude that there
may be a small improvement caused by the filtering but that it is smaller
than in the case of BILBO, TROLL or MAP. Where BILBO and TROLL were
ad-doc extensions of the MLLL algorithm, MAP is a theoretically sound
implementation which performs with equal accuracy. Further improvements
might be possible by modelling the data better since now it is assumed
Gaussian.

A comparison between MLLL,BILBO,TROLL and the work of others is
done in Section 4.3. Since MAP does not perform better than TROLL in terms
of accuracy the results can be compared.

Filter As stated in Section 5.3 a low pass filter operation is needed to
prevent MAP from finding local optima. We chose a Gaussian filter.
Experiments showed that a kernel with a standard deviation of 3.2 pixels
performs best. Small deviation from the kernel width have limited effect.
This can be seen in Figure 5.5. Although there is little variation between 1.5
and 4, outside this range the error quickly explodes. For all landmarks the
error without filtering is approximately 0.6 pixels higher, a big step compared
to the variation as seen due to the kernel width. In Figure 5.6 the MLLL
landscapes before and after filtering are shown. Many local optima in the
unfiltered MLLL map can be clearly seen. After filtering the high frequency
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Table 5.1: The average RMS error to the groundtruth data. Between brackets
the relative improvement to MLLL is given. Boldface denotes the smallest
error.

Total Eyes Nose Mouth
HQ

MLLL 2.7 1.9 3.6 3.4
MLLL filtered 2.6 (3%) 1.8 (4%) 3.5 (2%) 3.3 (4%)
BILBO 2.7 (0%) 1.9 (-4%) 3.6 (1%) 3.3 (3%)
TROLL 2.5 (6%) 1.9 (-2%) 3.4 (6%) 2.9 (14%)
MAP 2.5 (8%) 1.8 (2%) 3.4 (7%) 2.9 (15%)

LQ
MLLL 6.3 7.5 5.6 4.5
MLLL filtered 5.8 (8%) 6.6 (11%) 5.3 (7%) 4.5 (-1%)
BILBO 5.0 (20%) 5.4 (27%) 5.0 (11%) 4.3 (4%)
TROLL 4.9 (22%) 5.4 (28%) 4.8 (14%) 4.0 (10%)
MAP 4.9 (22%) 5.2 (30%) 5.1 (10%) 4.0 (11%)

C
MLLL 3.9 3.8 4.3 3.8
MLLL filtered 3.7 (6%) 3.5 (9%) 4.1 (4%) 3.7 (2%)
BILBO 3.5 (11%) 3.2 (17%) 4.1 (6%) 3.6 (4%)
TROLL 3.3 (15%) 3.1 (19%) 3.9 (10%) 3.3 (13%)
MAP 3.3 (16%) 3.0 (21%) 4.0 (8%) 3.3 (14%)

local optima are gone, resulting in a smoother image.

TROLL with MAP TROLL in combination with MAP instead of MLLL did
not yield any improvement. In Figure 5.7 is illustrated that already after the
first repetition of MAP the results deteriorate. This is especially true for the
LQ data, and even for the HQ data there is a small increase in error. The cause
of this is twofold. First, for the majority of images TROLL does not improve
the results but shows noisy behaviour around the ground truth. Secondly,
for the remainder of the images the shape does not converge but at some
point diverges and ’wanders off’. This is illustrated in Figure 5.8; the majority
remains roughly the same while a few images grow in error. This leads to the
conclusion that while with BILBO there was, on the whole, enough room
for improvement to make TROLL useful. With MAP most results initially
are already so good that there is no additional improvement by TROLL. At
the same time, in some images the error will grow out of proportion when
applying TROLL because there is no convergence. This effect was not seen in
Chapter 4, where we only investigated until the fifth iteration while here the
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Figure 5.5: The average error calculated on 10% of the training image as
function of the width of the Gaussian averaging filter kernel, in order to
determine the best filter size.

Figure 5.6: Example of an MLLL landscape (left) and the smoothed version
of it (right). Black denoted high probability and white low.gmap:mlllmap

results deteriorate directly after the first repetition of MAP.

Speed For both algorithms, TROLL and MAP, calculating the MLLL
landscape is by far the most time consuming step. TROLL calculates the
landscape a number of times. MAP only calculates it once and uses it as
a lookup table. This makes MAP faster than TROLL by almost a factor
equal to the number of iterations, since there is only very little time lost to
overhead. This increase is the number of iterations TROLL uses. In our
implementation MLLL takes approximately 7.5 seconds to calculate and 8
including the optimization and overhead. TROLL, with three iterations,
takes approximately 23 seconds to execute. Both implemented in Matlab.
Threefold speed improvement without loss of accuracy is a very useful
improvement.
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Figure 5.7: TROLL in combination with MAP instead of MLLL and BILBO.
The zero-th iteration denotes MLLL, 1 the first time MAP is calculated, 2 the
second time and so on. From left to right: HQ, LQ and C images.
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Figure 5.8: Errors for the first 100 individual images as function of the number
of iterations.
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Figure 5.9: Example of TROLL exploding after a bad initial guess due to a
face finder result on the wrong scale.

5.6 Conclusions

In this chapter we formulated a solid Maximum A Posteriori (MAP)
framework for finding the landmarks in a facial image. Using the likelihood
ratio of a location as well as the a priori probability of a landmark location
the Maximum Likelihood Landmark Locater (MLLL) was expanded to MAP.
We performed landmarking experiments on many images. We also applied
The Repetition Of Landmark Locating (TROLL) in combination with MAP,
assuming that better registration of the face prior to landmarking would lead
to improvements as was the case with MLLL as shown in Chapter 4.

The results show that using MAP actually improves the performance
of the MLLL algorithm on frontal still images. MAP has turned out to be
more robust because the performance on the low quality images improved
a lot, narrowing the performance gap with the high quality images. MAP
seems to perform better than an iterative implementation of a maximum
likelihood ration classifier, TROLL using MLLL. The difference is too small
to be significant. Applying MAP in combination with an iterative method,
TROLL using MAP, did not perform better than the MAP approach by
itself. However, MAP is more efficient than TROLL, resulting in a faster
landmarker.

From this we conclude that, as we expected, the assumption we made
that the landmark locations are independent and uncorrelated is incorrect.
Replacing these assumptions with a priori knowledge of the distribution
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of the landmarks, results in similar performance in term of accuracy but in
better performance in terms of efficiency, compared to MLLL and TROLL.

81





Chapter 6

Conclusions and
recommendations

The context of our research was face recognition in the home environment.
The importance of registration for dealing with the variability encountered
has been investigated. As a result of this study, the role of landmarking
methods as a cornerstone of accurate registration methods and their
underlying dependencies has been confirmed. We proposed the Most Likely
Landmark Locator (MLLL) as a robust landmarker which distinguishes a
landmark from a background. Two improvements are proposed: BILBO
and The Repetition Of Landmark Location (TROLL). BILBO improves the
landmark locations by using dependencies between landmark locations.
TROLL improves the results by repeating landmarking on registered images
and thus presenting face which fit the statistical models better. Finally all
the work on landmarks converged to a Maximum A Posteriori landmarker
(MAP). In Section 6.1 we discuss the conclusions and in Section 6.2 we give
recommendations for improvements and future work.

"Piled Higher and Deeper" by Jorge Cham. www.phdcomics.com
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6.1 Conclusions

6.1.1 Answers to the research questions

What is the relation between landmarking accuracy and face recognition
performance?

The relationship between the quality of landmarks used for registration
and the accuracy of recognition has been investigated in Chapter 2. Noise
was added to the ground truth landmarks before the classifier was trained.
We applied both rigid and deformable registration methods based on a set of
landmarks. We used the equal error rate (EER) of a verification experiment
as a measure for the quality of registration. A lower error corresponds with
better registration. Two important relations were found. First, using a higher
number of landmarks leads to better registration. Secondly, landmarks with
higher accuracy also lead to better registration. This means that when
using an automated face finder for an automatic face recognition system it
is important to use as many landmarks as possible that are as accurate as
possible, for good registration.

Can a statistical classifier approach be used for landmark detection?

MLLL is based upon a maximum a posteriori theoretical framework. MLLL
determines the likelihood ratio of two probability densities. Namely, the
probability density that a location is a landmark, divided by the probability
density that a location is not a landmark. In Chapter 4 we show that
the MLLL has a performance that is equivalent to methods proposed by
others, even though we present a more general implementation whereas
others mostly present landmarkers specific for the eyes. MLLL has shown
to perform well on up to 17 different facial landmarks. This number was
based upon availability of training data and there is no reason not to use more
landmarks. We showed that by tuning the many parameters the performance
can be boosted significantly compared to initial educated guesses and, that a
classifier based on Simplified Bayesian theory is still competitive.

Can the underlying statistical relationship between landmark locations be
used to improve landmarking?

BILBO In Chapter 3 we proposed BILBO, a post landmarking, subspace
based, outlier correction algorithm, which uses the underlying relationship
between multiple landmarks in the face. The results from a landmarker can
be substantially improved by BILBO. We found in Chapter 4 that applying
BILBO to the shape found by MLLL, improves the accuracy of the landmarks
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significantly. Although BILBO works better on shapes with many landmarks,
useful results have been obtained using shapes with only 4 landmarks.

MAP In Chapter 5 we formulated a solid MAP frame work for finding the
landmarks in a facial image. By using the likelihood ratio of a location as well
as the a priori probability of a landmark location the MLLL was expanded to
MAP. The results show that using MAP improves the performance of the
MLLL. MAP has turned out to be more robust, because the performance
on the low quality images improved significantly more than on high quality
images. This narrowed the performance gap between low quality and high
quality images. MAP is more efficient than TROLL, thus faster, while at the
same time it yields equal accuracy. We conclude that landmark locations
show a strong dependence and correlation. Using a priori knowledge of
the distribution of the landmarks, results in similar performance in terms of
accuracy but in better performance in terms of efficiency, compared to MLLL,
BILBO and TROLL. We expect that MAP will, just as BILBO, perform better
when the number of landmarks is expanded. The fact that MAP is a robust
and generic landmarker for cases with multiple landmark candidates present
inside a Region Of Interest (ROI) makes it a valuable addition to the spectrum
of landmarking tools.

Which methods can be used to reduce computational complexity and thus
also overcome the computational problems which arise from very large
training sets?

ARSVD We learned that using more training data improves the results.
If computational limitations exist for using large quantities of training
data, recursive algorithms, such as Approximate Recursive Singular Value
Decomposition (ARSVD), can be useful.

Frequency domain implementation. Another implementation to speed-up
landmarking is a spectral template matcher. In Chapter 3 this is explained in
detail. It speeds up the execution of MLLL tenfold.

Both ARSVD and the frequency domain implementation, are essential for
performance in terms of speed, accuracy and the possibility to investigate the
parameter space while tuning.

6.1.2 Additional conclusions

TROLL TROLL is an iterative implementation of a landmarker. It uses the
results of a landmarker to register the face and then again find landmarks
in a registered image until convergence is reached. We applied TROLL in
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combination with MLLL and BILBO. We show in Chapter 4 that TROLL
improves the results significantly in combination with MLLL.

General Although the landmarking methods are general and regardless of
the landmark it is trained to locate, the tuning is very specific. The focus of
this thesis is landmarking on facial images. The algorithms can be applied to
many landmark versus background classification problems in images. MAP
as a method for landmarking and registration is not limited to the face.

Finally we can conclude that with our proposed landmarking methods
and available methods for registration, feature reduction and classification,
face recognition in the home environment is a significant step closer to reality.
By improving landmarking methods we will be able to deal with much of the
variability encountered in the home environment.

6.2 Recommendations

Distance from subspace MLLL uses feature reduction for computational
reasons for creating maximum separation between classes. Every image
tested is projected onto this subspace. It is however so that even images
that are not part of the landmarks or background sets are projected onto
the subspace. Those images can end up close to the target. In order to
avoid misclassification, we can use the same fundamental trick as BILBO:
determine the distance between the sample and its projection onto the
subspace. The difference is a measure of how good the image fits the
subspace, which can be incorporated into MLLL.

Tuning MAP and MLLL are tuned and optimized manually. Because of
the large parameter space and limited time available this tuning was done
rather with crude heuristics and educated guesses. We are convinced that,
although we gave it our best effort, we are not at the optimal setting. A
possible solution is to use an automated optimization algorithm to find the
optimal settings. Also, as stated in Chapter 4, we tuned all MLLL parameters
collectively for all landmarks. Landmarkers for the eyes, nose and mouth use
the same settings for most parameters. Tuning each landmark individually
will improve the performance of each landmarker and thus MAP.

Evaluation criteria In order to evaluate the algorithm we used the
manually labelled ground truth data. As stated in Chapter 5 we suspect that
we are getting close to accuracy of the manually labelled landmarks on the
FRGC database. To confirm this it would be wise to estimate the amount of
noise on the landmarks. If contemporary landmarking methods approach
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manual landmarking quality, the distance between the found landmarks and
the manual landmarks is not a valid error measure. Possibly, the outcome of
a recognition experiment, can indicate the quality of landmarking reliably.

More landmarks The current implementation of MAP is trained on four
landmarks, as found in the FRGC database. There are other databases
offering other landmarks. We propose to combine these databases by more
training landmarkers and combining them with MAP. Using bootstrapping
methods we can refine these results and retrain all the landmarkers on
the data of one or all databases combined. We expect that adding more
landmarks to MAP will make MAP more robust and more accurate.
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Appendix A

MLLL

Here we briefly list the steps in the algorithms for the dimensionality
reduction and the whitening of the data.

A.1 Dimensionality reduction

The subspace should contain a good representation of both the landmark
data, Xl , and the background data, Xb.

i. Create the data matrices Xl and Xb where each column is a single
training sample ~x(~s).

ii. Calculate a basis of both landmark and background data:

U[l,b]S[l,b]V
T
[l,b] = (X[l,b] −M[l,b]), (A.1)

where M[l,b] = ~µ[l,b][1 . . . 1], i.e. a matrix whose columns are the column
average of X. The subscript [l, b] denotes that it applies to both the
landmark and background data.

iii. For computational reasons only the first columns of Ub and Ul , which
contain a fixed amount of the variance are kept.

Û[l,b] = [~u[l,b],1~u[l,b],2 . . .~u[l,b],nl
], (A.2)

where nl and nb denote the number of columns kept. Note that Ûl and
Ûb are not mutually orthogonal.

iv. The orthonormal basis should also contain the difference vector
between both means. Therefore we estimate the normalised average
landmark projection ~ul . This is the difference between the two
landmark means, normalised to unity length.

~ulb =
~µl −~µb

|~µl −~µb|
. (A.3)
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v. Transform the combined matrix [Ûl Ûb] so that it is orthogonal to ulb.

Ulb = (I − ~ulb~uT
lb)[Ûl Ûb]. (A.4)

vi. Make U′lb an orthonormal basis of Ulb

U′lbSVT = Ulb. (A.5)

vii. The final basis is given by

U = [~ulb U′lb]. (A.6)

viii. For the third time reduce the number of features:

Û = [~u1~u2 . . .~uj]. (A.7)

ix. Project the data onto the subspace

X′[l,b] = ÛT(X[l,b] −Mb). (A.8)

A.2 Whitening the data

Whitening the data is done so that both the covariance matrices are
diagonal and the background data are unity in variance. This later enables
straight forward computation of Equation 3.5 or its final implementation
Equation 3.9.

i. It follows from Equation A.8 that the mean of X′b, M′b is zero. Perform
an SVD on X′b:

UwSwVT
w = X′b. (A.9)

ii. Transform the data so that the background variance is unity:

X′′[l,b] =
S−1

w UT
w√

nb
X′[l,b]. (A.10)

where Sw and Uw follow from the SVD in Equation A.9. After this
tranform the backgound covariance matrix is (approximately) unity.

iii. Diagonalise the landmark covariance. The background covariance
matrix remains unity. Perform an SVD on the transformed landmark
data X′′l :

UdSdVT
d = X′′l −

S−1
w UT

wÛT
√

nb
(Ml −Mb). (A.11)

92



A.2. Whitening the data

iv. This results in a projection matrix Ud. The transformation from the
original image space to the subspace, which renders the background
covariance matrix (aproximately) unity and (approximately)
diagonalizes the landmark covariance matrix, is now defined as:

T =
UT

d S−1
w UT

wÛT
√

nb
. (A.12)
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BILBO

B.1 Training

BILBO is trained on a set of shapes, taken from the groundtruth data,
arranged as the columns of a matrix S. The training consists of the following
steps:

i. All shapes normalised in scale so that the region where the VJ face
finder found the face is between 0 and 1. Using this method we model
the real distributions of the data. All coordinates in S are thus between
0 and 1.

ii. Perform a singular value decomposition (S−~µs) = BWVT, with ~µs the
mean shape.

iii. Reduce the dimensionality of the subspace by taking only the first n <
2d columns of B.

B.2 Algorithm

To correct a shape the following algorithm is used:

i. Estimate the shape after transformation,~s = BBT ŝ.

ii. Determine the Euclidean distance |~εi| per landmark between~s and~s ′.

iii. Determine the threshold

τ = rc
1
d

d

∑
i=1
|~εi|, (B.1)

with c a constant and r the iteration number. Do not choose τ smaller
then a predetermined threshold.
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iv. For the landmarks of which |~εi| > τ, replace in~s ′ by the corresponding
coordinates from~s: ~si

′ =~si∀i
∣∣ |~εi| > τ.

v. Repeat steps i to iv. Once for a landmark |~εi| < τ stop updating
it. Continue until all landmarks satisfy |~εi| < τ. Keep track of the
coordinates which are allowed to change (update~i).

vi. Repeat step i to v changing all coordinates until stable or r = 5. Allow
all landmark coordinates to update (reset~i).

vii. Transform the coordinates back to the original scale.

In Figure 3.7 a schematic overview of the shape correction algorithm is
shown.
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Complexity

C.1 MLLL

Consider a ROI containing n pixels. The number of operations per DFFT2 is
then O(n log2(n)). After feature reduction the number of features is m. The
number of DFFT2s to be computed is m + 1, as can be seen in Figure 3.6.
Computing the likelihood ratio after feature computation, Equation 3.9, at
every pixel location has a complexity of O(5mn). Number of operations per
ROI for finding the maximum value is O(n). This makes the total number of
operations per ROI:

(m + 1)O(n log2(n)) + nO(5m) + O(n). (C.1)

Dividing by n gives the number of operations per pixel in ROI:

O(m(log2(n) + 6)). (C.2)

The large ROIs used are 256× 256 pixels, which means that n = 25088. We
used m = 219 features. Equation C.2 results in a complexity of O(5000)
operations per pixel in the ROI.

C.2 Viola and Jones

The complexity of the Viola and Jones algortihm depends on the numbers
of scales S, cascades C, and features K. Estimates for these numbers are
taken from [62]; S = 11, C = 15, K = 30, on average. The total number
of operations per pixel in the ROI are upperbounded by O(S × C × K) ≈
O(5000).
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Dimensionality Reduction

The subspace should contain a good representation of both the landmark
data, Xl , and the background data, Xb. Each column of data matrices Xl and
Xb is a single training sample xs. Therefore the two projections are

U(l,b) f Sl,bVT
l,b = (Xl,b −Ml,b) (D.1)

where Ml,b = µl,b[1 . . . 1], i.e. a matrix whose columns are the column average
of X. For computational reasons we only keep a certain amount of data. Only
the first columns which contain a fixed amount of the variance are kept. Here
that is 90% of the landmark variance and 98% of the background variance.
How many columns are kept varies per landmark. So Ul and Ub are not
mutually orthogonal and may have possible overlap between the both of
them.

The basis should also contain the difference vector between both means.
Therefore estimate the normalised average landmark projection ul . This is
the difference between the two landmark means, normalised to unity length.

ulb =
µl − µb

|µl − µb|
. (D.2)

Next, we transform the combined matrix [Ul Ub] so that it is orthogonal to
ulb:

Ulb = (I − ulbuT
lb)[Ul Ub] (D.3)

and turn Ulb into an orthonormal basis of Ulb:

U′lbSVT = Ulb. (D.4)

The final basis is given by
U = [ulb U′lb]. (D.5)

Again we now reduce the number of features to n by keeping only the first n
columns of U with the relevant information. Here that is 98% for the variance.
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